UNPKG

zrender

Version:

A lightweight graphic library providing 2d draw for Apache ECharts

501 lines (445 loc) 12.6 kB
/** * 曲线辅助模块 */ import { create as v2Create, distSquare as v2DistSquare, VectorArray } from './vector'; const mathPow = Math.pow; const mathSqrt = Math.sqrt; const EPSILON = 1e-8; const EPSILON_NUMERIC = 1e-4; const THREE_SQRT = mathSqrt(3); const ONE_THIRD = 1 / 3; // 临时变量 const _v0 = v2Create(); const _v1 = v2Create(); const _v2 = v2Create(); function isAroundZero(val: number) { return val > -EPSILON && val < EPSILON; } function isNotAroundZero(val: number) { return val > EPSILON || val < -EPSILON; } /** * 计算三次贝塞尔值 */ export function cubicAt(p0: number, p1: number, p2: number, p3: number, t: number): number { const onet = 1 - t; return onet * onet * (onet * p0 + 3 * t * p1) + t * t * (t * p3 + 3 * onet * p2); } /** * 计算三次贝塞尔导数值 */ export function cubicDerivativeAt(p0: number, p1: number, p2: number, p3: number, t: number): number { const onet = 1 - t; return 3 * ( ((p1 - p0) * onet + 2 * (p2 - p1) * t) * onet + (p3 - p2) * t * t ); } /** * 计算三次贝塞尔方程根,使用盛金公式 */ export function cubicRootAt(p0: number, p1: number, p2: number, p3: number, val: number, roots: number[]): number { // Evaluate roots of cubic functions const a = p3 + 3 * (p1 - p2) - p0; const b = 3 * (p2 - p1 * 2 + p0); const c = 3 * (p1 - p0); const d = p0 - val; const A = b * b - 3 * a * c; const B = b * c - 9 * a * d; const C = c * c - 3 * b * d; let n = 0; if (isAroundZero(A) && isAroundZero(B)) { if (isAroundZero(b)) { roots[0] = 0; } else { const t1 = -c / b; //t1, t2, t3, b is not zero if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } } } else { const disc = B * B - 4 * A * C; if (isAroundZero(disc)) { const K = B / A; const t1 = -b / a + K; // t1, a is not zero const t2 = -K / 2; // t2, t3 if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } if (t2 >= 0 && t2 <= 1) { roots[n++] = t2; } } else if (disc > 0) { const discSqrt = mathSqrt(disc); let Y1 = A * b + 1.5 * a * (-B + discSqrt); let Y2 = A * b + 1.5 * a * (-B - discSqrt); if (Y1 < 0) { Y1 = -mathPow(-Y1, ONE_THIRD); } else { Y1 = mathPow(Y1, ONE_THIRD); } if (Y2 < 0) { Y2 = -mathPow(-Y2, ONE_THIRD); } else { Y2 = mathPow(Y2, ONE_THIRD); } const t1 = (-b - (Y1 + Y2)) / (3 * a); if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } } else { const T = (2 * A * b - 3 * a * B) / (2 * mathSqrt(A * A * A)); const theta = Math.acos(T) / 3; const ASqrt = mathSqrt(A); const tmp = Math.cos(theta); const t1 = (-b - 2 * ASqrt * tmp) / (3 * a); const t2 = (-b + ASqrt * (tmp + THREE_SQRT * Math.sin(theta))) / (3 * a); const t3 = (-b + ASqrt * (tmp - THREE_SQRT * Math.sin(theta))) / (3 * a); if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } if (t2 >= 0 && t2 <= 1) { roots[n++] = t2; } if (t3 >= 0 && t3 <= 1) { roots[n++] = t3; } } } return n; } /** * 计算三次贝塞尔方程极限值的位置 * @return 有效数目 */ export function cubicExtrema(p0: number, p1: number, p2: number, p3: number, extrema: number[]): number { const b = 6 * p2 - 12 * p1 + 6 * p0; const a = 9 * p1 + 3 * p3 - 3 * p0 - 9 * p2; const c = 3 * p1 - 3 * p0; let n = 0; if (isAroundZero(a)) { if (isNotAroundZero(b)) { const t1 = -c / b; if (t1 >= 0 && t1 <= 1) { extrema[n++] = t1; } } } else { const disc = b * b - 4 * a * c; if (isAroundZero(disc)) { extrema[0] = -b / (2 * a); } else if (disc > 0) { const discSqrt = mathSqrt(disc); const t1 = (-b + discSqrt) / (2 * a); const t2 = (-b - discSqrt) / (2 * a); if (t1 >= 0 && t1 <= 1) { extrema[n++] = t1; } if (t2 >= 0 && t2 <= 1) { extrema[n++] = t2; } } } return n; } /** * 细分三次贝塞尔曲线 */ export function cubicSubdivide(p0: number, p1: number, p2: number, p3: number, t: number, out: number[]) { const p01 = (p1 - p0) * t + p0; const p12 = (p2 - p1) * t + p1; const p23 = (p3 - p2) * t + p2; const p012 = (p12 - p01) * t + p01; const p123 = (p23 - p12) * t + p12; const p0123 = (p123 - p012) * t + p012; // Seg0 out[0] = p0; out[1] = p01; out[2] = p012; out[3] = p0123; // Seg1 out[4] = p0123; out[5] = p123; out[6] = p23; out[7] = p3; } /** * 投射点到三次贝塞尔曲线上,返回投射距离。 * 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。 */ export function cubicProjectPoint( x0: number, y0: number, x1: number, y1: number, x2: number, y2: number, x3: number, y3: number, x: number, y: number, out: VectorArray ): number { // http://pomax.github.io/bezierinfo/#projections let t; let interval = 0.005; let d = Infinity; let prev; let next; let d1; let d2; _v0[0] = x; _v0[1] = y; // 先粗略估计一下可能的最小距离的 t 值 // PENDING for (let _t = 0; _t < 1; _t += 0.05) { _v1[0] = cubicAt(x0, x1, x2, x3, _t); _v1[1] = cubicAt(y0, y1, y2, y3, _t); d1 = v2DistSquare(_v0, _v1); if (d1 < d) { t = _t; d = d1; } } d = Infinity; // At most 32 iteration for (let i = 0; i < 32; i++) { if (interval < EPSILON_NUMERIC) { break; } prev = t - interval; next = t + interval; // t - interval _v1[0] = cubicAt(x0, x1, x2, x3, prev); _v1[1] = cubicAt(y0, y1, y2, y3, prev); d1 = v2DistSquare(_v1, _v0); if (prev >= 0 && d1 < d) { t = prev; d = d1; } else { // t + interval _v2[0] = cubicAt(x0, x1, x2, x3, next); _v2[1] = cubicAt(y0, y1, y2, y3, next); d2 = v2DistSquare(_v2, _v0); if (next <= 1 && d2 < d) { t = next; d = d2; } else { interval *= 0.5; } } } // t if (out) { out[0] = cubicAt(x0, x1, x2, x3, t); out[1] = cubicAt(y0, y1, y2, y3, t); } // console.log(interval, i); return mathSqrt(d); } /** * 计算三次贝塞尔曲线长度 */ export function cubicLength( x0: number, y0: number, x1: number, y1: number, x2: number, y2: number, x3: number, y3: number, iteration: number ) { let px = x0; let py = y0; let d = 0; const step = 1 / iteration; for (let i = 1; i <= iteration; i++) { let t = i * step; const x = cubicAt(x0, x1, x2, x3, t); const y = cubicAt(y0, y1, y2, y3, t); const dx = x - px; const dy = y - py; d += Math.sqrt(dx * dx + dy * dy); px = x; py = y; } return d; } /** * 计算二次方贝塞尔值 */ export function quadraticAt(p0: number, p1: number, p2: number, t: number): number { const onet = 1 - t; return onet * (onet * p0 + 2 * t * p1) + t * t * p2; } /** * 计算二次方贝塞尔导数值 */ export function quadraticDerivativeAt(p0: number, p1: number, p2: number, t: number): number { return 2 * ((1 - t) * (p1 - p0) + t * (p2 - p1)); } /** * 计算二次方贝塞尔方程根 * @return 有效根数目 */ export function quadraticRootAt(p0: number, p1: number, p2: number, val: number, roots: number[]): number { const a = p0 - 2 * p1 + p2; const b = 2 * (p1 - p0); const c = p0 - val; let n = 0; if (isAroundZero(a)) { if (isNotAroundZero(b)) { const t1 = -c / b; if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } } } else { const disc = b * b - 4 * a * c; if (isAroundZero(disc)) { const t1 = -b / (2 * a); if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } } else if (disc > 0) { const discSqrt = mathSqrt(disc); const t1 = (-b + discSqrt) / (2 * a); const t2 = (-b - discSqrt) / (2 * a); if (t1 >= 0 && t1 <= 1) { roots[n++] = t1; } if (t2 >= 0 && t2 <= 1) { roots[n++] = t2; } } } return n; } /** * 计算二次贝塞尔方程极限值 */ export function quadraticExtremum(p0: number, p1: number, p2: number): number { const divider = p0 + p2 - 2 * p1; if (divider === 0) { // p1 is center of p0 and p2 return 0.5; } else { return (p0 - p1) / divider; } } /** * 细分二次贝塞尔曲线 */ export function quadraticSubdivide(p0: number, p1: number, p2: number, t: number, out: number[]) { const p01 = (p1 - p0) * t + p0; const p12 = (p2 - p1) * t + p1; const p012 = (p12 - p01) * t + p01; // Seg0 out[0] = p0; out[1] = p01; out[2] = p012; // Seg1 out[3] = p012; out[4] = p12; out[5] = p2; } /** * 投射点到二次贝塞尔曲线上,返回投射距离。 * 投射点有可能会有一个或者多个,这里只返回其中距离最短的一个。 * @param {number} x0 * @param {number} y0 * @param {number} x1 * @param {number} y1 * @param {number} x2 * @param {number} y2 * @param {number} x * @param {number} y * @param {Array.<number>} out 投射点 * @return {number} */ export function quadraticProjectPoint( x0: number, y0: number, x1: number, y1: number, x2: number, y2: number, x: number, y: number, out: VectorArray ): number { // http://pomax.github.io/bezierinfo/#projections let t: number; let interval = 0.005; let d = Infinity; _v0[0] = x; _v0[1] = y; // 先粗略估计一下可能的最小距离的 t 值 // PENDING for (let _t = 0; _t < 1; _t += 0.05) { _v1[0] = quadraticAt(x0, x1, x2, _t); _v1[1] = quadraticAt(y0, y1, y2, _t); const d1 = v2DistSquare(_v0, _v1); if (d1 < d) { t = _t; d = d1; } } d = Infinity; // At most 32 iteration for (let i = 0; i < 32; i++) { if (interval < EPSILON_NUMERIC) { break; } const prev = t - interval; const next = t + interval; // t - interval _v1[0] = quadraticAt(x0, x1, x2, prev); _v1[1] = quadraticAt(y0, y1, y2, prev); const d1 = v2DistSquare(_v1, _v0); if (prev >= 0 && d1 < d) { t = prev; d = d1; } else { // t + interval _v2[0] = quadraticAt(x0, x1, x2, next); _v2[1] = quadraticAt(y0, y1, y2, next); const d2 = v2DistSquare(_v2, _v0); if (next <= 1 && d2 < d) { t = next; d = d2; } else { interval *= 0.5; } } } // t if (out) { out[0] = quadraticAt(x0, x1, x2, t); out[1] = quadraticAt(y0, y1, y2, t); } // console.log(interval, i); return mathSqrt(d); } /** * 计算二次贝塞尔曲线长度 */ export function quadraticLength( x0: number, y0: number, x1: number, y1: number, x2: number, y2: number, iteration: number ) { let px = x0; let py = y0; let d = 0; const step = 1 / iteration; for (let i = 1; i <= iteration; i++) { let t = i * step; const x = quadraticAt(x0, x1, x2, t); const y = quadraticAt(y0, y1, y2, t); const dx = x - px; const dy = y - py; d += Math.sqrt(dx * dx + dy * dy); px = x; py = y; } return d; }