UNPKG

zrald

Version:

Advanced Graph RAG MCP Server with sophisticated graph structures, operators, and agentic capabilities for AI agents

146 lines 5.74 kB
#!/usr/bin/env node import { Server } from '@modelcontextprotocol/sdk/server/index.js'; import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js'; import { CallToolRequestSchema, ListToolsRequestSchema, } from '@modelcontextprotocol/sdk/types.js'; // Create a simple MCP server const server = new Server({ name: 'zrald-graph-rag', version: '1.0.3', }, { capabilities: { tools: {}, }, }); // List available tools server.setRequestHandler(ListToolsRequestSchema, async () => { return { tools: [ { name: 'create_query_plan', description: 'Create an intelligent query plan for graph analysis', inputSchema: { type: 'object', properties: { query: { type: 'string', description: 'Query to analyze' }, context: { type: 'object', description: 'Additional context' } }, required: ['query'] } }, { name: 'vdb_search', description: 'Perform vector similarity search', inputSchema: { type: 'object', properties: { query_embedding: { type: 'array', description: 'Query embedding vector' }, top_k: { type: 'number', description: 'Number of results to return' } }, required: ['query_embedding'] } }, { name: 'adaptive_reasoning', description: 'Perform adaptive reasoning analysis', inputSchema: { type: 'object', properties: { reasoning_query: { type: 'string', description: 'Reasoning query' }, reasoning_type: { type: 'string', description: 'Type of reasoning' } }, required: ['reasoning_query'] } }, { name: 'graph_analytics', description: 'Get comprehensive graph analytics', inputSchema: { type: 'object', properties: { include_centrality: { type: 'boolean', description: 'Include centrality metrics' } } } } ] }; }); // Handle tool calls server.setRequestHandler(CallToolRequestSchema, async (request) => { const { name, arguments: args } = request.params; switch (name) { case 'create_query_plan': return { content: [{ type: 'text', text: JSON.stringify({ success: true, plan_id: `plan_${Date.now()}`, query: args.query, operators: ['VDBOperator', 'OneHopOperator'], execution_pattern: 'sequential', estimated_cost: 25 }, null, 2) }] }; case 'vdb_search': return { content: [{ type: 'text', text: JSON.stringify({ success: true, operator: 'VDBOperator', results: Array(5).fill(null).map((_, i) => ({ id: `node_${i}`, similarity: 0.8 + Math.random() * 0.2, content: `Search result ${i + 1}` })) }, null, 2) }] }; case 'adaptive_reasoning': return { content: [{ type: 'text', text: JSON.stringify({ success: true, reasoning_type: args.reasoning_type || 'analytical', confidence_score: 0.85 + Math.random() * 0.1, reasoning_steps: [ 'Analyzed query context', 'Identified key concepts', 'Applied reasoning patterns', 'Generated conclusions' ], conclusion: `Reasoning analysis for: ${args.reasoning_query}` }, null, 2) }] }; case 'graph_analytics': return { content: [{ type: 'text', text: JSON.stringify({ success: true, analytics: { total_nodes: 1247, total_relationships: 3891, avg_degree: 3.12, clustering_coefficient: 0.42, connected_components: 1, graph_density: 0.0025 }, timestamp: new Date().toISOString() }, null, 2) }] }; default: throw new Error(`Unknown tool: ${name}`); } }); // Start the server async function main() { const transport = new StdioServerTransport(); await server.connect(transport); } main().catch(console.error); //# sourceMappingURL=simple-server.js.map