UNPKG

zrald

Version:

Advanced Graph RAG MCP Server with sophisticated graph structures, operators, and agentic capabilities for AI agents

40 lines 1.6 kB
import { Node, Chunk } from '../types/graph.js'; export interface VectorSearchResult { id: string; score: number; node?: Node; chunk?: Chunk; } export declare class VectorStore { private dimension; private maxElements; private nodeMap; private chunkMap; private embeddings; private currentIndex; constructor(dimension?: number, maxElements?: number); initialize(): Promise<void>; addNode(node: Node): Promise<void>; addChunk(chunk: Chunk): Promise<void>; searchNodes(queryEmbedding: number[], topK?: number, threshold?: number): Promise<VectorSearchResult[]>; searchByNodeTypes(queryEmbedding: number[], nodeTypes: string[], topK?: number, threshold?: number): Promise<VectorSearchResult[]>; searchChunks(queryEmbedding: number[], topK?: number, threshold?: number): Promise<VectorSearchResult[]>; getNodeById(id: string): Promise<Node | undefined>; getChunkById(id: string): Promise<Chunk | undefined>; updateNode(node: Node): Promise<void>; removeNode(id: string): Promise<void>; batchAddNodes(nodes: Node[]): Promise<void>; batchAddChunks(chunks: Chunk[]): Promise<void>; getStats(): { totalNodes: number; totalChunks: number; dimension: number; maxElements: number; }; saveIndex(filePath: string): Promise<void>; loadIndex(filePath: string): Promise<void>; clear(): Promise<void>; static cosineSimilarity(a: number[], b: number[]): number; static euclideanDistance(a: number[], b: number[]): number; } //# sourceMappingURL=vector-store.d.ts.map