UNPKG

zrald1

Version:

Advanced Graph RAG MCP Server with file location identification, graph processing, and result summarization capabilities

46 lines 1.8 kB
import { Node, Chunk, File } from '../types/graph.js'; export interface VectorSearchResult { id: string; score: number; node?: Node; chunk?: Chunk; file?: File; } export declare class VectorStore { private dimension; private maxElements; private nodeMap; private chunkMap; private fileMap; private embeddings; private currentIndex; constructor(dimension?: number, maxElements?: number); initialize(): Promise<void>; addNode(node: Node): Promise<void>; addChunk(chunk: Chunk): Promise<void>; addFile(file: File, embedding?: number[]): Promise<void>; searchNodes(queryEmbedding: number[], topK?: number, threshold?: number): Promise<VectorSearchResult[]>; searchByNodeTypes(queryEmbedding: number[], nodeTypes: string[], topK?: number, threshold?: number): Promise<VectorSearchResult[]>; searchChunks(queryEmbedding: number[], topK?: number, threshold?: number): Promise<VectorSearchResult[]>; searchFiles(queryEmbedding: number[], topK?: number, threshold?: number): Promise<VectorSearchResult[]>; getStats(): { totalNodes: number; totalChunks: number; totalFiles: number; totalEmbeddings: number; dimension: number; maxElements: number; }; static cosineSimilarity(a: number[], b: number[]): number; static euclideanDistance(a: number[], b: number[]): number; static dotProduct(a: number[], b: number[]): number; static generateRandomEmbedding(dimension: number): number[]; clear(): void; getAllNodes(): Node[]; getAllChunks(): Chunk[]; getAllFiles(): File[]; removeNode(nodeId: string): boolean; removeChunk(chunkId: string): boolean; removeFile(fileId: string): boolean; } //# sourceMappingURL=vector-store.d.ts.map