UNPKG

zigbee-on-host

Version:

ZigBee stack designed to run on a host and communicate with a radio co-processor (RCP)

351 lines 16.1 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.convertMaskToChannels = exports.convertChannelsToMask = void 0; exports.aes128MmoHash = aes128MmoHash; exports.aes128CcmStar = aes128CcmStar; exports.computeAuthTag = computeAuthTag; exports.combineSecurityControl = combineSecurityControl; exports.makeNonce = makeNonce; exports.registerDefaultHashedKeys = registerDefaultHashedKeys; exports.makeKeyedHash = makeKeyedHash; exports.makeKeyedHashByType = makeKeyedHashByType; exports.decodeZigbeeSecurityHeader = decodeZigbeeSecurityHeader; exports.encodeZigbeeSecurityHeader = encodeZigbeeSecurityHeader; exports.decryptZigbeePayload = decryptZigbeePayload; exports.encryptZigbeePayload = encryptZigbeePayload; const node_crypto_1 = require("node:crypto"); function aes128MmoHashUpdate(result, data, dataSize) { while (dataSize >= 16 /* ZigbeeConsts.SEC_BLOCKSIZE */) { const cipher = (0, node_crypto_1.createCipheriv)("aes-128-ecb", result, null); const block = data.subarray(0, 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); const u = cipher.update(block); const f = cipher.final(); const encryptedBlock = Buffer.alloc(u.byteLength + f.byteLength); encryptedBlock.set(u, 0); encryptedBlock.set(f, u.byteLength); // XOR encrypted and plaintext for (let i = 0; i < 16 /* ZigbeeConsts.SEC_BLOCKSIZE */; i++) { result[i] = encryptedBlock[i] ^ block[i]; } data = data.subarray(16 /* ZigbeeConsts.SEC_BLOCKSIZE */); dataSize -= 16 /* ZigbeeConsts.SEC_BLOCKSIZE */; } } /** * See B.1.3 Cryptographic Hash Function * * AES-128-MMO (Matyas-Meyer-Oseas) hashing (using node 'crypto' built-in with 'aes-128-ecb') * * Used for Install Codes - see Document 13-0402-13 - 10.1 */ function aes128MmoHash(data) { const hashResult = Buffer.alloc(16 /* ZigbeeConsts.SEC_BLOCKSIZE */); let remainingLength = data.byteLength; let position = 0; for (position; remainingLength >= 16 /* ZigbeeConsts.SEC_BLOCKSIZE */;) { const chunk = data.subarray(position, position + 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); aes128MmoHashUpdate(hashResult, chunk, chunk.byteLength); position += 16 /* ZigbeeConsts.SEC_BLOCKSIZE */; remainingLength -= 16 /* ZigbeeConsts.SEC_BLOCKSIZE */; } const temp = Buffer.alloc(16 /* ZigbeeConsts.SEC_BLOCKSIZE */); temp.set(data.subarray(position, position + remainingLength), 0); // per the spec, concatenate a 1 bit followed by all zero bits temp[remainingLength] = 0x80; // if appending the bit string will push us beyond the 16-byte boundary, hash that block and append another 16-byte block if (16 /* ZigbeeConsts.SEC_BLOCKSIZE */ - remainingLength < 3) { aes128MmoHashUpdate(hashResult, temp, 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); temp.fill(0); } temp[16 /* ZigbeeConsts.SEC_BLOCKSIZE */ - 2] = (data.byteLength >> 5) & 0xff; temp[16 /* ZigbeeConsts.SEC_BLOCKSIZE */ - 1] = (data.byteLength << 3) & 0xff; aes128MmoHashUpdate(hashResult, temp, 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); return hashResult.subarray(0, 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); } /** * See A CCM* MODE OF OPERATION * * Used for Zigbee NWK layer encryption/decryption */ function aes128CcmStar(M, key, nonce, data) { const payloadLengthNoM = data.byteLength - M; const blockCount = 1 + Math.ceil(payloadLengthNoM / 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); const plaintext = Buffer.alloc(blockCount * 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); plaintext.set(data.subarray(-M), 0); plaintext.set(data.subarray(0, -M), 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); const cipher = (0, node_crypto_1.createCipheriv)("aes-128-ecb", key, null); const buffer = Buffer.alloc(blockCount * 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); const counter = Buffer.alloc(16 /* ZigbeeConsts.SEC_BLOCKSIZE */); counter[0] = 1 /* ZigbeeConsts.SEC_CCM_FLAG_L */; counter.set(nonce, 1); for (let blockNum = 0; blockNum < blockCount; blockNum++) { // big endian of size ZigbeeConsts.SEC_L counter[counter.byteLength - 2] = (blockNum >> 8) & 0xff; counter[counter.byteLength - 1] = blockNum & 0xff; const plaintextBlock = plaintext.subarray(16 /* ZigbeeConsts.SEC_BLOCKSIZE */ * blockNum, 16 /* ZigbeeConsts.SEC_BLOCKSIZE */ * (blockNum + 1)); const cipherU = cipher.update(counter); // XOR cipher and plaintext for (let i = 0; i < cipherU.byteLength; i++) { cipherU[i] ^= plaintextBlock[i]; } buffer.set(cipherU, 16 /* ZigbeeConsts.SEC_BLOCKSIZE */ * blockNum); } cipher.final(); const authTag = buffer.subarray(0, M); const ciphertext = buffer.subarray(16 /* ZigbeeConsts.SEC_BLOCKSIZE */, 16 /* ZigbeeConsts.SEC_BLOCKSIZE */ + payloadLengthNoM); return [authTag, ciphertext]; } /** * aes-128-cbc with iv as 0-filled block size * * Used for Zigbee NWK layer encryption/decryption */ function computeAuthTag(authData, M, key, nonce, data) { const startPaddedSize = Math.ceil((1 + nonce.byteLength + 2 /* ZigbeeConsts.SEC_L */ + 2 /* ZigbeeConsts.SEC_L */ + authData.byteLength) / 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); const endPaddedSize = Math.ceil(data.byteLength / 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); const prependAuthData = Buffer.alloc(startPaddedSize * 16 /* ZigbeeConsts.SEC_BLOCKSIZE */ + endPaddedSize * 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); let offset = 0; prependAuthData[offset] = ((((M - 2) / 2) & 0x7) << 3) | (authData.byteLength > 0 ? 0x40 : 0x00) | 1 /* ZigbeeConsts.SEC_CCM_FLAG_L */; offset += 1; prependAuthData.set(nonce, offset); offset += nonce.byteLength; // big endian of size ZigbeeConsts.SEC_L prependAuthData[offset] = (data.byteLength >> 8) & 0xff; prependAuthData[offset + 1] = data.byteLength & 0xff; offset += 2; const prepend = authData.byteLength; // big endian of size ZigbeeConsts.SEC_L prependAuthData[offset] = (prepend >> 8) & 0xff; prependAuthData[offset + 1] = prepend & 0xff; offset += 2; prependAuthData.set(authData, offset); offset += authData.byteLength; const dataOffset = Math.ceil(offset / 16 /* ZigbeeConsts.SEC_BLOCKSIZE */) * 16 /* ZigbeeConsts.SEC_BLOCKSIZE */; prependAuthData.set(data, dataOffset); const cipher = (0, node_crypto_1.createCipheriv)("aes-128-cbc", key, Buffer.alloc(16 /* ZigbeeConsts.SEC_BLOCKSIZE */, 0)); const cipherU = cipher.update(prependAuthData); cipher.final(); const authTag = cipherU.subarray(-16 /* ZigbeeConsts.SEC_BLOCKSIZE */, -16 /* ZigbeeConsts.SEC_BLOCKSIZE */ + M); return authTag; } function combineSecurityControl(control, levelOverride) { return (((levelOverride !== undefined ? levelOverride : control.level) & 7 /* ZigbeeConsts.SEC_CONTROL_LEVEL */) | ((control.keyId << 3) & 24 /* ZigbeeConsts.SEC_CONTROL_KEY */) | (((control.nonce ? 1 : 0) << 5) & 32 /* ZigbeeConsts.SEC_CONTROL_NONCE */)); } function makeNonce(header, source64, levelOverride) { const nonce = Buffer.alloc(13 /* ZigbeeConsts.SEC_NONCE_LEN */); // TODO: write source64 as all 0/F if undefined? nonce.writeBigUInt64LE(source64, 0); nonce.writeUInt32LE(header.frameCounter, 8); nonce.writeUInt8(combineSecurityControl(header.control, levelOverride), 12); return nonce; } /** * In order: * ZigbeeKeyType.LINK, ZigbeeKeyType.NWK, ZigbeeKeyType.TRANSPORT, ZigbeeKeyType.LOAD */ const defaultHashedKeys = [Buffer.alloc(0), Buffer.alloc(0), Buffer.alloc(0), Buffer.alloc(0)]; /** * Pre-hashing default keys makes decryptions ~5x faster */ function registerDefaultHashedKeys(link, nwk, transport, load) { defaultHashedKeys[0] = link; defaultHashedKeys[1] = nwk; defaultHashedKeys[2] = transport; defaultHashedKeys[3] = load; } /** * See B.1.4 Keyed Hash Function for Message Authentication * * @param key ZigBee Security Key (must be ZigbeeConsts.SEC_KEYSIZE) in length. * @param inputByte Input byte */ function makeKeyedHash(key, inputByte) { const hashOut = Buffer.alloc(16 /* ZigbeeConsts.SEC_BLOCKSIZE */ + 1); const hashIn = Buffer.alloc(2 * 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); for (let i = 0; i < 16 /* ZigbeeConsts.SEC_KEYSIZE */; i++) { // copy the key into hashIn and XOR with opad to form: (Key XOR opad) hashIn[i] = key[i] ^ 92 /* ZigbeeConsts.SEC_OPAD */; // copy the Key into hashOut and XOR with ipad to form: (Key XOR ipad) hashOut[i] = key[i] ^ 54 /* ZigbeeConsts.SEC_IPAD */; } // append the input byte to form: (Key XOR ipad) || text. hashOut[16 /* ZigbeeConsts.SEC_BLOCKSIZE */] = inputByte; // hash the contents of hashOut and append the contents to hashIn to form: (Key XOR opad) || H((Key XOR ipad) || text) hashIn.set(aes128MmoHash(hashOut), 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); // hash the contents of hashIn to get the final result hashOut.set(aes128MmoHash(hashIn), 0); return hashOut.subarray(0, 16 /* ZigbeeConsts.SEC_BLOCKSIZE */); } /** Hash key if needed, else return `key` as is */ function makeKeyedHashByType(keyId, key) { switch (keyId) { case 1 /* ZigbeeKeyType.NWK */: case 0 /* ZigbeeKeyType.LINK */: { // NWK: decrypt with the PAN's current network key // LINK: decrypt with the unhashed link key assigned by the trust center to this source/destination pair return key; } case 2 /* ZigbeeKeyType.TRANSPORT */: { // decrypt with a Transport key, a hashed link key that protects network keys sent from the trust center return makeKeyedHash(key, 0x00); } case 3 /* ZigbeeKeyType.LOAD */: { // decrypt with a Load key, a hashed link key that protects link keys sent from the trust center return makeKeyedHash(key, 0x02); } default: { throw new Error(`Unsupported key ID ${keyId}`); } } } function decodeZigbeeSecurityHeader(data, offset, source64) { const control = data.readUInt8(offset); offset += 1; const level = 5 /* ZigbeeSecurityLevel.ENC_MIC32 */; // overrides control & ZigbeeConsts.SEC_CONTROL_LEVEL; const keyId = (control & 24 /* ZigbeeConsts.SEC_CONTROL_KEY */) >> 3; const nonce = Boolean((control & 32 /* ZigbeeConsts.SEC_CONTROL_NONCE */) >> 5); const frameCounter = data.readUInt32LE(offset); offset += 4; if (nonce) { source64 = data.readBigUInt64LE(offset); offset += 8; } let keySeqNum; if (keyId === 1 /* ZigbeeKeyType.NWK */) { keySeqNum = data.readUInt8(offset); offset += 1; } const micLen = 4; // NOTE: Security level for Zigbee 3.0 === 5 // let micLen: number; // switch (level) { // case ZigbeeSecurityLevel.ENC: // case ZigbeeSecurityLevel.NONE: // default: // micLen = 0; // break; // case ZigbeeSecurityLevel.ENC_MIC32: // case ZigbeeSecurityLevel.MIC32: // micLen = 4; // break; // case ZigbeeSecurityLevel.ENC_MIC64: // case ZigbeeSecurityLevel.MIC64: // micLen = 8; // break; // case ZigbeeSecurityLevel.ENC_MIC128: // case ZigbeeSecurityLevel.MIC128: // micLen = 16; // break; // } return [ { control: { level, keyId, nonce, }, frameCounter, source64, keySeqNum, micLen, }, offset, ]; } function encodeZigbeeSecurityHeader(data, offset, header) { data.writeUInt8(combineSecurityControl(header.control), offset); offset += 1; data.writeUInt32LE(header.frameCounter, offset); offset += 4; if (header.control.nonce) { data.writeBigUInt64LE(header.source64, offset); offset += 8; } if (header.control.keyId === 1 /* ZigbeeKeyType.NWK */) { data.writeUInt8(header.keySeqNum, offset); offset += 1; } return offset; } function decryptZigbeePayload(data, offset, key, source64) { const controlOffset = offset; const [header, hOutOffset] = decodeZigbeeSecurityHeader(data, offset, source64); let authTag; let decryptedPayload; if (header.source64 !== undefined) { const hashedKey = key ? makeKeyedHashByType(header.control.keyId, key) : defaultHashedKeys[header.control.keyId]; const nonce = makeNonce(header, header.source64); const encryptedData = data.subarray(hOutOffset); // payload + auth tag [authTag, decryptedPayload] = aes128CcmStar(header.micLen, hashedKey, nonce, encryptedData); // take until end of securityHeader for auth tag computation const adjustedAuthData = data.subarray(0, hOutOffset); // patch the security level to ZigBee 3.0 const origControl = adjustedAuthData[controlOffset]; adjustedAuthData[controlOffset] &= ~7 /* ZigbeeConsts.SEC_CONTROL_LEVEL */; adjustedAuthData[controlOffset] |= 7 /* ZigbeeConsts.SEC_CONTROL_LEVEL */ & 5 /* ZigbeeSecurityLevel.ENC_MIC32 */; const computedAuthTag = computeAuthTag(adjustedAuthData, header.micLen, hashedKey, nonce, decryptedPayload); // restore security level adjustedAuthData[controlOffset] = origControl; if (!computedAuthTag.equals(authTag)) { throw new Error("Auth tag mismatch while decrypting Zigbee payload"); } } if (!decryptedPayload) { throw new Error("Unable to decrypt Zigbee payload"); } return [decryptedPayload, header, hOutOffset]; } function encryptZigbeePayload(data, offset, payload, header, key) { const controlOffset = offset; offset = encodeZigbeeSecurityHeader(data, offset, header); let authTag; let encryptedPayload; if (header.source64 !== undefined) { const hashedKey = key ? makeKeyedHashByType(header.control.keyId, key) : defaultHashedKeys[header.control.keyId]; const nonce = makeNonce(header, header.source64, 5 /* ZigbeeSecurityLevel.ENC_MIC32 */); const adjustedAuthData = data.subarray(0, offset); // patch the security level to ZigBee 3.0 const origControl = adjustedAuthData[controlOffset]; adjustedAuthData[controlOffset] &= ~7 /* ZigbeeConsts.SEC_CONTROL_LEVEL */; adjustedAuthData[controlOffset] |= 7 /* ZigbeeConsts.SEC_CONTROL_LEVEL */ & 5 /* ZigbeeSecurityLevel.ENC_MIC32 */; const decryptedData = Buffer.alloc(payload.byteLength + header.micLen); // payload + auth tag decryptedData.set(payload, 0); // take nwkHeader + securityHeader for auth tag computation const computedAuthTag = computeAuthTag(adjustedAuthData, header.micLen, hashedKey, nonce, payload); decryptedData.set(computedAuthTag, payload.byteLength); // restore security level adjustedAuthData[controlOffset] = origControl; [authTag, encryptedPayload] = aes128CcmStar(header.micLen, hashedKey, nonce, decryptedData); } if (!encryptedPayload || !authTag) { throw new Error("Unable to encrypt Zigbee payload"); } return [encryptedPayload, authTag, offset]; } /** * Converts a channels array to a uint32 channel mask. * @param channels * @returns */ const convertChannelsToMask = (channels) => { return channels.reduce((a, c) => a + (1 << c), 0); }; exports.convertChannelsToMask = convertChannelsToMask; /** * Converts a uint32 channel mask to a channels array. * @param mask * @returns */ const convertMaskToChannels = (mask) => { const channels = []; for (const channel of [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]) { if ((2 ** channel) & mask) { channels.push(channel); } } return channels; }; exports.convertMaskToChannels = convertMaskToChannels; //# sourceMappingURL=zigbee.js.map