yuang-framework-ui-pc
Version:
yuang-framework-ui-pc Library
1,058 lines (1,057 loc) • 35.5 kB
JavaScript
"use strict";
var __defProp = Object.defineProperty;
var __defNormalProp = (obj, key, value) => key in obj ? __defProp(obj, key, { enumerable: true, configurable: true, writable: true, value }) : obj[key] = value;
var __publicField = (obj, key, value) => __defNormalProp(obj, typeof key !== "symbol" ? key + "" : key, value);
var qrcodegen;
((qrcodegen2) => {
const _QrCode = class _QrCode {
/*-- Constructor (low level) and fields --*/
// Creates a new QR Code with the given version number,
// error correction level, data codeword bytes, and mask number.
// This is a low-level API that most users should not use directly.
// A mid-level API is the encodeSegments() function.
constructor(version, errorCorrectionLevel, dataCodewords, msk) {
/*-- Fields --*/
// The width and height of this QR Code, measured in modules, between
// 21 and 177 (inclusive). This is equal to version * 4 + 17.
__publicField(this, "size");
// The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
// Even if a QR Code is created with automatic masking requested (mask = -1),
// the resulting object still has a mask value between 0 and 7.
__publicField(this, "mask");
// The modules of this QR Code (false = light, true = dark).
// Immutable after constructor finishes. Accessed through getModule().
__publicField(this, "modules", []);
// Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
__publicField(this, "isFunction", []);
this.version = version;
this.errorCorrectionLevel = errorCorrectionLevel;
if (version < _QrCode.MIN_VERSION || version > _QrCode.MAX_VERSION)
throw "Version value out of range";
if (msk < -1 || msk > 7) throw "Mask value out of range";
this.size = version * 4 + 17;
let row = [];
for (let i = 0; i < this.size; i++) row.push(false);
for (let i = 0; i < this.size; i++) {
this.modules.push(row.slice());
this.isFunction.push(row.slice());
}
this.drawFunctionPatterns();
const allCodewords = this.addEccAndInterleave(dataCodewords);
this.drawCodewords(allCodewords);
if (msk == -1) {
let minPenalty = 1e9;
for (let i = 0; i < 8; i++) {
this.applyMask(i);
this.drawFormatBits(i);
const penalty = this.getPenaltyScore();
if (penalty < minPenalty) {
msk = i;
minPenalty = penalty;
}
this.applyMask(i);
}
}
assert(0 <= msk && msk <= 7);
this.mask = msk;
this.applyMask(msk);
this.drawFormatBits(msk);
this.isFunction = [];
}
/*-- Static factory functions (high level) --*/
// Returns a QR Code representing the given Unicode text string at the given error correction level.
// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer
// Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible
// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the
// ecl argument if it can be done without increasing the version.
static encodeText(text, ecl) {
const segs = qrcodegen2.QrSegment.makeSegments(text);
return _QrCode.encodeSegments(segs, ecl);
}
// Returns a QR Code representing the given binary data at the given error correction level.
// This function always encodes using the binary segment mode, not any text mode. The maximum number of
// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
static encodeBinary(data, ecl) {
const seg = qrcodegen2.QrSegment.makeBytes(data);
return _QrCode.encodeSegments([seg], ecl);
}
/*-- Static factory functions (mid level) --*/
// Returns a QR Code representing the given segments with the given encoding parameters.
// The smallest possible QR Code version within the given range is automatically
// chosen for the output. Iff boostEcl is true, then the ECC level of the result
// may be higher than the ecl argument if it can be done without increasing the
// version. The mask number is either between 0 to 7 (inclusive) to force that
// mask, or -1 to automatically choose an appropriate mask (which may be slow).
// This function allows the user to create a custom sequence of segments that switches
// between modes (such as alphanumeric and byte) to encode text in less space.
// This is a mid-level API; the high-level API is encodeText() and encodeBinary().
static encodeSegments(segs, ecl, minVersion = 1, maxVersion = 40, mask = -1, boostEcl = true) {
if (!(_QrCode.MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= _QrCode.MAX_VERSION) || mask < -1 || mask > 7)
throw "Invalid value";
let version;
let dataUsedBits;
for (version = minVersion; ; version++) {
const dataCapacityBits2 = _QrCode.getNumDataCodewords(version, ecl) * 8;
const usedBits = QrSegment.getTotalBits(segs, version);
if (usedBits <= dataCapacityBits2) {
dataUsedBits = usedBits;
break;
}
if (version >= maxVersion)
throw "Data too long";
}
for (const newEcl of [
_QrCode.Ecc.MEDIUM,
_QrCode.Ecc.QUARTILE,
_QrCode.Ecc.HIGH
]) {
if (boostEcl && dataUsedBits <= _QrCode.getNumDataCodewords(version, newEcl) * 8)
ecl = newEcl;
}
let bb = [];
for (const seg of segs) {
appendBits(seg.mode.modeBits, 4, bb);
appendBits(seg.numChars, seg.mode.numCharCountBits(version), bb);
for (const b of seg.getData()) bb.push(b);
}
assert(bb.length == dataUsedBits);
const dataCapacityBits = _QrCode.getNumDataCodewords(version, ecl) * 8;
assert(bb.length <= dataCapacityBits);
appendBits(0, Math.min(4, dataCapacityBits - bb.length), bb);
appendBits(0, (8 - bb.length % 8) % 8, bb);
assert(bb.length % 8 == 0);
for (let padByte = 236; bb.length < dataCapacityBits; padByte ^= 236 ^ 17)
appendBits(padByte, 8, bb);
let dataCodewords = [];
while (dataCodewords.length * 8 < bb.length) dataCodewords.push(0);
bb.forEach(
(b, i) => dataCodewords[i >>> 3] |= b << 7 - (i & 7)
);
return new _QrCode(version, ecl, dataCodewords, mask);
}
/*-- Accessor methods --*/
// Returns the color of the module (pixel) at the given coordinates, which is false
// for light or true for dark. The top left corner has the coordinates (x=0, y=0).
// If the given coordinates are out of bounds, then false (light) is returned.
getModule(x, y) {
return 0 <= x && x < this.size && 0 <= y && y < this.size && this.modules[y][x];
}
// Modified to expose modules for easy access
getModules() {
return this.modules;
}
/*-- Private helper methods for constructor: Drawing function modules --*/
// Reads this object's version field, and draws and marks all function modules.
drawFunctionPatterns() {
for (let i = 0; i < this.size; i++) {
this.setFunctionModule(6, i, i % 2 == 0);
this.setFunctionModule(i, 6, i % 2 == 0);
}
this.drawFinderPattern(3, 3);
this.drawFinderPattern(this.size - 4, 3);
this.drawFinderPattern(3, this.size - 4);
const alignPatPos = this.getAlignmentPatternPositions();
const numAlign = alignPatPos.length;
for (let i = 0; i < numAlign; i++) {
for (let j = 0; j < numAlign; j++) {
if (!(i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0))
this.drawAlignmentPattern(alignPatPos[i], alignPatPos[j]);
}
}
this.drawFormatBits(0);
this.drawVersion();
}
// Draws two copies of the format bits (with its own error correction code)
// based on the given mask and this object's error correction level field.
drawFormatBits(mask) {
const data = this.errorCorrectionLevel.formatBits << 3 | mask;
let rem = data;
for (let i = 0; i < 10; i++) rem = rem << 1 ^ (rem >>> 9) * 1335;
const bits = (data << 10 | rem) ^ 21522;
assert(bits >>> 15 == 0);
for (let i = 0; i <= 5; i++)
this.setFunctionModule(8, i, getBit(bits, i));
this.setFunctionModule(8, 7, getBit(bits, 6));
this.setFunctionModule(8, 8, getBit(bits, 7));
this.setFunctionModule(7, 8, getBit(bits, 8));
for (let i = 9; i < 15; i++)
this.setFunctionModule(14 - i, 8, getBit(bits, i));
for (let i = 0; i < 8; i++)
this.setFunctionModule(this.size - 1 - i, 8, getBit(bits, i));
for (let i = 8; i < 15; i++)
this.setFunctionModule(8, this.size - 15 + i, getBit(bits, i));
this.setFunctionModule(8, this.size - 8, true);
}
// Draws two copies of the version bits (with its own error correction code),
// based on this object's version field, iff 7 <= version <= 40.
drawVersion() {
if (this.version < 7) return;
let rem = this.version;
for (let i = 0; i < 12; i++) rem = rem << 1 ^ (rem >>> 11) * 7973;
const bits = this.version << 12 | rem;
assert(bits >>> 18 == 0);
for (let i = 0; i < 18; i++) {
const color = getBit(bits, i);
const a = this.size - 11 + i % 3;
const b = Math.floor(i / 3);
this.setFunctionModule(a, b, color);
this.setFunctionModule(b, a, color);
}
}
// Draws a 9*9 finder pattern including the border separator,
// with the center module at (x, y). Modules can be out of bounds.
drawFinderPattern(x, y) {
for (let dy = -4; dy <= 4; dy++) {
for (let dx = -4; dx <= 4; dx++) {
const dist = Math.max(Math.abs(dx), Math.abs(dy));
const xx = x + dx;
const yy = y + dy;
if (0 <= xx && xx < this.size && 0 <= yy && yy < this.size)
this.setFunctionModule(xx, yy, dist != 2 && dist != 4);
}
}
}
// Draws a 5*5 alignment pattern, with the center module
// at (x, y). All modules must be in bounds.
drawAlignmentPattern(x, y) {
for (let dy = -2; dy <= 2; dy++) {
for (let dx = -2; dx <= 2; dx++)
this.setFunctionModule(
x + dx,
y + dy,
Math.max(Math.abs(dx), Math.abs(dy)) != 1
);
}
}
// Sets the color of a module and marks it as a function module.
// Only used by the constructor. Coordinates must be in bounds.
setFunctionModule(x, y, isDark) {
this.modules[y][x] = isDark;
this.isFunction[y][x] = true;
}
/*-- Private helper methods for constructor: Codewords and masking --*/
// Returns a new byte string representing the given data with the appropriate error correction
// codewords appended to it, based on this object's version and error correction level.
addEccAndInterleave(data) {
const ver = this.version;
const ecl = this.errorCorrectionLevel;
if (data.length != _QrCode.getNumDataCodewords(ver, ecl))
throw "Invalid argument";
const numBlocks = _QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver];
const blockEccLen = _QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver];
const rawCodewords = Math.floor(
_QrCode.getNumRawDataModules(ver) / 8
);
const numShortBlocks = numBlocks - rawCodewords % numBlocks;
const shortBlockLen = Math.floor(rawCodewords / numBlocks);
let blocks = [];
const rsDiv = _QrCode.reedSolomonComputeDivisor(blockEccLen);
for (let i = 0, k = 0; i < numBlocks; i++) {
let dat = data.slice(
k,
k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1)
);
k += dat.length;
const ecc = _QrCode.reedSolomonComputeRemainder(dat, rsDiv);
if (i < numShortBlocks) dat.push(0);
blocks.push(dat.concat(ecc));
}
let result = [];
for (let i = 0; i < blocks[0].length; i++) {
blocks.forEach((block, j) => {
if (i != shortBlockLen - blockEccLen || j >= numShortBlocks)
result.push(block[i]);
});
}
assert(result.length == rawCodewords);
return result;
}
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
// data area of this QR Code. Function modules need to be marked off before this is called.
drawCodewords(data) {
if (data.length != Math.floor(_QrCode.getNumRawDataModules(this.version) / 8))
throw "Invalid argument";
let i = 0;
for (let right = this.size - 1; right >= 1; right -= 2) {
if (right == 6) right = 5;
for (let vert = 0; vert < this.size; vert++) {
for (let j = 0; j < 2; j++) {
const x = right - j;
const upward = (right + 1 & 2) == 0;
const y = upward ? this.size - 1 - vert : vert;
if (!this.isFunction[y][x] && i < data.length * 8) {
this.modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7));
i++;
}
}
}
}
assert(i == data.length * 8);
}
// XORs the codeword modules in this QR Code with the given mask pattern.
// The function modules must be marked and the codeword bits must be drawn
// before masking. Due to the arithmetic of XOR, calling applyMask() with
// the same mask value a second time will undo the mask. A final well-formed
// QR Code needs exactly one (not zero, two, etc.) mask applied.
applyMask(mask) {
if (mask < 0 || mask > 7) throw "Mask value out of range";
for (let y = 0; y < this.size; y++) {
for (let x = 0; x < this.size; x++) {
let invert;
switch (mask) {
case 0:
invert = (x + y) % 2 == 0;
break;
case 1:
invert = y % 2 == 0;
break;
case 2:
invert = x % 3 == 0;
break;
case 3:
invert = (x + y) % 3 == 0;
break;
case 4:
invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0;
break;
case 5:
invert = x * y % 2 + x * y % 3 == 0;
break;
case 6:
invert = (x * y % 2 + x * y % 3) % 2 == 0;
break;
case 7:
invert = ((x + y) % 2 + x * y % 3) % 2 == 0;
break;
default:
throw "Unreachable";
}
if (!this.isFunction[y][x] && invert)
this.modules[y][x] = !this.modules[y][x];
}
}
}
// Calculates and returns the penalty score based on state of this QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
getPenaltyScore() {
let result = 0;
for (let y = 0; y < this.size; y++) {
let runColor = false;
let runX = 0;
let runHistory = [0, 0, 0, 0, 0, 0, 0];
for (let x = 0; x < this.size; x++) {
if (this.modules[y][x] == runColor) {
runX++;
if (runX == 5) result += _QrCode.PENALTY_N1;
else if (runX > 5) result++;
} else {
this.finderPenaltyAddHistory(runX, runHistory);
if (!runColor)
result += this.finderPenaltyCountPatterns(runHistory) * _QrCode.PENALTY_N3;
runColor = this.modules[y][x];
runX = 1;
}
}
result += this.finderPenaltyTerminateAndCount(runColor, runX, runHistory) * _QrCode.PENALTY_N3;
}
for (let x = 0; x < this.size; x++) {
let runColor = false;
let runY = 0;
let runHistory = [0, 0, 0, 0, 0, 0, 0];
for (let y = 0; y < this.size; y++) {
if (this.modules[y][x] == runColor) {
runY++;
if (runY == 5) result += _QrCode.PENALTY_N1;
else if (runY > 5) result++;
} else {
this.finderPenaltyAddHistory(runY, runHistory);
if (!runColor)
result += this.finderPenaltyCountPatterns(runHistory) * _QrCode.PENALTY_N3;
runColor = this.modules[y][x];
runY = 1;
}
}
result += this.finderPenaltyTerminateAndCount(runColor, runY, runHistory) * _QrCode.PENALTY_N3;
}
for (let y = 0; y < this.size - 1; y++) {
for (let x = 0; x < this.size - 1; x++) {
const color = this.modules[y][x];
if (color == this.modules[y][x + 1] && color == this.modules[y + 1][x] && color == this.modules[y + 1][x + 1])
result += _QrCode.PENALTY_N2;
}
}
let dark = 0;
for (const row of this.modules)
dark = row.reduce((sum, color) => sum + (color ? 1 : 0), dark);
const total = this.size * this.size;
const k = Math.ceil(Math.abs(dark * 20 - total * 10) / total) - 1;
assert(0 <= k && k <= 9);
result += k * _QrCode.PENALTY_N4;
assert(0 <= result && result <= 2568888);
return result;
}
/*-- Private helper functions --*/
// Returns an ascending list of positions of alignment patterns for this version number.
// Each position is in the range [0,177), and are used on both the x and y axes.
// This could be implemented as lookup table of 40 variable-length lists of integers.
getAlignmentPatternPositions() {
if (this.version == 1) return [];
else {
const numAlign = Math.floor(this.version / 7) + 2;
const step = this.version == 32 ? 26 : Math.ceil((this.version * 4 + 4) / (numAlign * 2 - 2)) * 2;
let result = [6];
for (let pos = this.size - 7; result.length < numAlign; pos -= step)
result.splice(1, 0, pos);
return result;
}
}
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
static getNumRawDataModules(ver) {
if (ver < _QrCode.MIN_VERSION || ver > _QrCode.MAX_VERSION)
throw "Version number out of range";
let result = (16 * ver + 128) * ver + 64;
if (ver >= 2) {
const numAlign = Math.floor(ver / 7) + 2;
result -= (25 * numAlign - 10) * numAlign - 55;
if (ver >= 7) result -= 36;
}
assert(208 <= result && result <= 29648);
return result;
}
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
// QR Code of the given version number and error correction level, with remainder bits discarded.
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
static getNumDataCodewords(ver, ecl) {
return Math.floor(_QrCode.getNumRawDataModules(ver) / 8) - _QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver] * _QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver];
}
// Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
// implemented as a lookup table over all possible parameter values, instead of as an algorithm.
static reedSolomonComputeDivisor(degree) {
if (degree < 1 || degree > 255) throw "Degree out of range";
let result = [];
for (let i = 0; i < degree - 1; i++) result.push(0);
result.push(1);
let root = 1;
for (let i = 0; i < degree; i++) {
for (let j = 0; j < result.length; j++) {
result[j] = _QrCode.reedSolomonMultiply(result[j], root);
if (j + 1 < result.length) result[j] ^= result[j + 1];
}
root = _QrCode.reedSolomonMultiply(root, 2);
}
return result;
}
// Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.
static reedSolomonComputeRemainder(data, divisor) {
let result = divisor.map((_) => 0);
for (const b of data) {
const factor = b ^ result.shift();
result.push(0);
divisor.forEach(
(coef, i) => result[i] ^= _QrCode.reedSolomonMultiply(coef, factor)
);
}
return result;
}
// Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
// are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
static reedSolomonMultiply(x, y) {
if (x >>> 8 != 0 || y >>> 8 != 0) throw "Byte out of range";
let z = 0;
for (let i = 7; i >= 0; i--) {
z = z << 1 ^ (z >>> 7) * 285;
z ^= (y >>> i & 1) * x;
}
assert(z >>> 8 == 0);
return z;
}
// Can only be called immediately after a light run is added, and
// returns either 0, 1, or 2. A helper function for getPenaltyScore().
finderPenaltyCountPatterns(runHistory) {
const n = runHistory[1];
assert(n <= this.size * 3);
const core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n;
return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0);
}
// Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
finderPenaltyTerminateAndCount(currentRunColor, currentRunLength, runHistory) {
if (currentRunColor) {
this.finderPenaltyAddHistory(currentRunLength, runHistory);
currentRunLength = 0;
}
currentRunLength += this.size;
this.finderPenaltyAddHistory(currentRunLength, runHistory);
return this.finderPenaltyCountPatterns(runHistory);
}
// Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
finderPenaltyAddHistory(currentRunLength, runHistory) {
if (runHistory[0] == 0) currentRunLength += this.size;
runHistory.pop();
runHistory.unshift(currentRunLength);
}
};
/*-- Constants and tables --*/
// The minimum version number supported in the QR Code Model 2 standard.
__publicField(_QrCode, "MIN_VERSION", 1);
// The maximum version number supported in the QR Code Model 2 standard.
__publicField(_QrCode, "MAX_VERSION", 40);
// For use in getPenaltyScore(), when evaluating which mask is best.
__publicField(_QrCode, "PENALTY_N1", 3);
__publicField(_QrCode, "PENALTY_N2", 3);
__publicField(_QrCode, "PENALTY_N3", 40);
__publicField(_QrCode, "PENALTY_N4", 10);
__publicField(_QrCode, "ECC_CODEWORDS_PER_BLOCK", [
// Version: (note that index 0 is for padding, and is set to an illegal value)
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
[
-1,
7,
10,
15,
20,
26,
18,
20,
24,
30,
18,
20,
24,
26,
30,
22,
24,
28,
30,
28,
28,
28,
28,
30,
30,
26,
28,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30
],
// Low
[
-1,
10,
16,
26,
18,
24,
16,
18,
22,
22,
26,
30,
22,
22,
24,
24,
28,
28,
26,
26,
26,
26,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28
],
// Medium
[
-1,
13,
22,
18,
26,
18,
24,
18,
22,
20,
24,
28,
26,
24,
20,
30,
24,
28,
28,
26,
30,
28,
30,
30,
30,
30,
28,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30
],
// Quartile
[
-1,
17,
28,
22,
16,
22,
28,
26,
26,
24,
28,
24,
28,
22,
24,
24,
30,
28,
28,
26,
28,
30,
24,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30,
30
]
// High
]);
__publicField(_QrCode, "NUM_ERROR_CORRECTION_BLOCKS", [
// Version: (note that index 0 is for padding, and is set to an illegal value)
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
[
-1,
1,
1,
1,
1,
1,
2,
2,
2,
2,
4,
4,
4,
4,
4,
6,
6,
6,
6,
7,
8,
8,
9,
9,
10,
12,
12,
12,
13,
14,
15,
16,
17,
18,
19,
19,
20,
21,
22,
24,
25
],
// Low
[
-1,
1,
1,
1,
2,
2,
4,
4,
4,
5,
5,
5,
8,
9,
9,
10,
10,
11,
13,
14,
16,
17,
17,
18,
20,
21,
23,
25,
26,
28,
29,
31,
33,
35,
37,
38,
40,
43,
45,
47,
49
],
// Medium
[
-1,
1,
1,
2,
2,
4,
4,
6,
6,
8,
8,
8,
10,
12,
16,
12,
17,
16,
18,
21,
20,
23,
23,
25,
27,
29,
34,
34,
35,
38,
40,
43,
45,
48,
51,
53,
56,
59,
62,
65,
68
],
// Quartile
[
-1,
1,
1,
2,
4,
4,
4,
5,
6,
8,
8,
11,
11,
16,
16,
18,
16,
19,
21,
25,
25,
25,
34,
30,
32,
35,
37,
40,
42,
45,
48,
51,
54,
57,
60,
63,
66,
70,
74,
77,
81
]
// High
]);
let QrCode = _QrCode;
qrcodegen2.QrCode = QrCode;
function appendBits(val, len, bb) {
if (len < 0 || len > 31 || val >>> len != 0) throw "Value out of range";
for (let i = len - 1; i >= 0; i--)
bb.push(val >>> i & 1);
}
function getBit(x, i) {
return (x >>> i & 1) != 0;
}
function assert(cond) {
if (!cond) throw "Assertion error";
}
const _QrSegment = class _QrSegment {
/*-- Constructor (low level) and fields --*/
// Creates a new QR Code segment with the given attributes and data.
// The character count (numChars) must agree with the mode and the bit buffer length,
// but the constraint isn't checked. The given bit buffer is cloned and stored.
constructor(mode, numChars, bitData) {
this.mode = mode;
this.numChars = numChars;
this.bitData = bitData;
if (numChars < 0) throw "Invalid argument";
this.bitData = bitData.slice();
}
/*-- Static factory functions (mid level) --*/
// Returns a segment representing the given binary data encoded in
// byte mode. All input byte arrays are acceptable. Any text string
// can be converted to UTF-8 bytes and encoded as a byte mode segment.
static makeBytes(data) {
let bb = [];
for (const b of data) appendBits(b, 8, bb);
return new _QrSegment(_QrSegment.Mode.BYTE, data.length, bb);
}
// Returns a segment representing the given string of decimal digits encoded in numeric mode.
static makeNumeric(digits) {
if (!_QrSegment.isNumeric(digits))
throw "String contains non-numeric characters";
let bb = [];
for (let i = 0; i < digits.length; ) {
const n = Math.min(digits.length - i, 3);
appendBits(Number.parseInt(digits.substr(i, n), 10), n * 3 + 1, bb);
i += n;
}
return new _QrSegment(_QrSegment.Mode.NUMERIC, digits.length, bb);
}
// Returns a segment representing the given text string encoded in alphanumeric mode.
// The characters allowed are: 0 to 9, A to Z (uppercase only), space,
// dollar, percent, asterisk, plus, hyphen, period, slash, colon.
static makeAlphanumeric(text) {
if (!_QrSegment.isAlphanumeric(text))
throw "String contains unencodable characters in alphanumeric mode";
let bb = [];
let i;
for (i = 0; i + 2 <= text.length; i += 2) {
let temp = _QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45;
temp += _QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1));
appendBits(temp, 11, bb);
}
if (i < text.length)
appendBits(
_QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)),
6,
bb
);
return new _QrSegment(_QrSegment.Mode.ALPHANUMERIC, text.length, bb);
}
// Returns a new mutable list of zero or more segments to represent the given Unicode text string.
// The result may use various segment modes and switch modes to optimize the length of the bit stream.
static makeSegments(text) {
if (text == "") return [];
else if (_QrSegment.isNumeric(text)) return [_QrSegment.makeNumeric(text)];
else if (_QrSegment.isAlphanumeric(text))
return [_QrSegment.makeAlphanumeric(text)];
else return [_QrSegment.makeBytes(_QrSegment.toUtf8ByteArray(text))];
}
// Returns a segment representing an Extended Channel Interpretation
// (ECI) designator with the given assignment value.
static makeEci(assignVal) {
let bb = [];
if (assignVal < 0) throw "ECI assignment value out of range";
else if (assignVal < 1 << 7) appendBits(assignVal, 8, bb);
else if (assignVal < 1 << 14) {
appendBits(2, 2, bb);
appendBits(assignVal, 14, bb);
} else if (assignVal < 1e6) {
appendBits(6, 3, bb);
appendBits(assignVal, 21, bb);
} else throw "ECI assignment value out of range";
return new _QrSegment(_QrSegment.Mode.ECI, 0, bb);
}
// Tests whether the given string can be encoded as a segment in numeric mode.
// A string is encodable iff each character is in the range 0 to 9.
static isNumeric(text) {
return _QrSegment.NUMERIC_REGEX.test(text);
}
// Tests whether the given string can be encoded as a segment in alphanumeric mode.
// A string is encodable iff each character is in the following set: 0 to 9, A to Z
// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
static isAlphanumeric(text) {
return _QrSegment.ALPHANUMERIC_REGEX.test(text);
}
/*-- Methods --*/
// Returns a new copy of the data bits of this segment.
getData() {
return this.bitData.slice();
}
// (Package-private) Calculates and returns the number of bits needed to encode the given segments at
// the given version. The result is infinity if a segment has too many characters to fit its length field.
static getTotalBits(segs, version) {
let result = 0;
for (const seg of segs) {
const ccbits = seg.mode.numCharCountBits(version);
if (seg.numChars >= 1 << ccbits) return Infinity;
result += 4 + ccbits + seg.bitData.length;
}
return result;
}
// Returns a new array of bytes representing the given string encoded in UTF-8.
static toUtf8ByteArray(str) {
str = encodeURI(str);
let result = [];
for (let i = 0; i < str.length; i++) {
if (str.charAt(i) != "%") result.push(str.charCodeAt(i));
else {
result.push(Number.parseInt(str.substr(i + 1, 2), 16));
i += 2;
}
}
return result;
}
};
/*-- Constants --*/
// Describes precisely all strings that are encodable in numeric mode.
__publicField(_QrSegment, "NUMERIC_REGEX", /^[0-9]*$/);
// Describes precisely all strings that are encodable in alphanumeric mode.
__publicField(_QrSegment, "ALPHANUMERIC_REGEX", /^[A-Z0-9 $%*+.\/:-]*$/);
// The set of all legal characters in alphanumeric mode,
// where each character value maps to the index in the string.
__publicField(_QrSegment, "ALPHANUMERIC_CHARSET", "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:");
let QrSegment = _QrSegment;
qrcodegen2.QrSegment = QrSegment;
})(qrcodegen || (qrcodegen = {}));
((qrcodegen2) => {
((QrCode2) => {
const _Ecc = class _Ecc {
// The QR Code can tolerate about 30% erroneous codewords
/*-- Constructor and fields --*/
constructor(ordinal, formatBits) {
this.ordinal = ordinal;
this.formatBits = formatBits;
}
};
/*-- Constants --*/
__publicField(_Ecc, "LOW", new _Ecc(0, 1));
// The QR Code can tolerate about 7% erroneous codewords
__publicField(_Ecc, "MEDIUM", new _Ecc(1, 0));
// The QR Code can tolerate about 15% erroneous codewords
__publicField(_Ecc, "QUARTILE", new _Ecc(2, 3));
// The QR Code can tolerate about 25% erroneous codewords
__publicField(_Ecc, "HIGH", new _Ecc(3, 2));
let Ecc = _Ecc;
QrCode2.Ecc = Ecc;
})(qrcodegen2.QrCode || (qrcodegen2.QrCode = {}));
})(qrcodegen || (qrcodegen = {}));
((qrcodegen2) => {
((QrSegment2) => {
const _Mode = class _Mode {
/*-- Constructor and fields --*/
constructor(modeBits, numBitsCharCount) {
this.modeBits = modeBits;
this.numBitsCharCount = numBitsCharCount;
}
/*-- Method --*/
// (Package-private) Returns the bit width of the character count field for a segment in
// this mode in a QR Code at the given version number. The result is in the range [0, 16].
numCharCountBits(ver) {
return this.numBitsCharCount[Math.floor((ver + 7) / 17)];
}
};
/*-- Constants --*/
__publicField(_Mode, "NUMERIC", new _Mode(1, [10, 12, 14]));
__publicField(_Mode, "ALPHANUMERIC", new _Mode(2, [9, 11, 13]));
__publicField(_Mode, "BYTE", new _Mode(4, [8, 16, 16]));
__publicField(_Mode, "KANJI", new _Mode(8, [8, 10, 12]));
__publicField(_Mode, "ECI", new _Mode(7, [0, 0, 0]));
let Mode = _Mode;
QrSegment2.Mode = Mode;
})(qrcodegen2.QrSegment || (qrcodegen2.QrSegment = {}));
})(qrcodegen || (qrcodegen = {}));
const qrcodegen$1 = qrcodegen;
module.exports = qrcodegen$1;