UNPKG

yuang-framework-ui-pc

Version:

yuang-framework-ui-pc Library

1,058 lines (1,057 loc) 35.5 kB
"use strict"; var __defProp = Object.defineProperty; var __defNormalProp = (obj, key, value) => key in obj ? __defProp(obj, key, { enumerable: true, configurable: true, writable: true, value }) : obj[key] = value; var __publicField = (obj, key, value) => __defNormalProp(obj, typeof key !== "symbol" ? key + "" : key, value); var qrcodegen; ((qrcodegen2) => { const _QrCode = class _QrCode { /*-- Constructor (low level) and fields --*/ // Creates a new QR Code with the given version number, // error correction level, data codeword bytes, and mask number. // This is a low-level API that most users should not use directly. // A mid-level API is the encodeSegments() function. constructor(version, errorCorrectionLevel, dataCodewords, msk) { /*-- Fields --*/ // The width and height of this QR Code, measured in modules, between // 21 and 177 (inclusive). This is equal to version * 4 + 17. __publicField(this, "size"); // The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive). // Even if a QR Code is created with automatic masking requested (mask = -1), // the resulting object still has a mask value between 0 and 7. __publicField(this, "mask"); // The modules of this QR Code (false = light, true = dark). // Immutable after constructor finishes. Accessed through getModule(). __publicField(this, "modules", []); // Indicates function modules that are not subjected to masking. Discarded when constructor finishes. __publicField(this, "isFunction", []); this.version = version; this.errorCorrectionLevel = errorCorrectionLevel; if (version < _QrCode.MIN_VERSION || version > _QrCode.MAX_VERSION) throw "Version value out of range"; if (msk < -1 || msk > 7) throw "Mask value out of range"; this.size = version * 4 + 17; let row = []; for (let i = 0; i < this.size; i++) row.push(false); for (let i = 0; i < this.size; i++) { this.modules.push(row.slice()); this.isFunction.push(row.slice()); } this.drawFunctionPatterns(); const allCodewords = this.addEccAndInterleave(dataCodewords); this.drawCodewords(allCodewords); if (msk == -1) { let minPenalty = 1e9; for (let i = 0; i < 8; i++) { this.applyMask(i); this.drawFormatBits(i); const penalty = this.getPenaltyScore(); if (penalty < minPenalty) { msk = i; minPenalty = penalty; } this.applyMask(i); } } assert(0 <= msk && msk <= 7); this.mask = msk; this.applyMask(msk); this.drawFormatBits(msk); this.isFunction = []; } /*-- Static factory functions (high level) --*/ // Returns a QR Code representing the given Unicode text string at the given error correction level. // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer // Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the // ecl argument if it can be done without increasing the version. static encodeText(text, ecl) { const segs = qrcodegen2.QrSegment.makeSegments(text); return _QrCode.encodeSegments(segs, ecl); } // Returns a QR Code representing the given binary data at the given error correction level. // This function always encodes using the binary segment mode, not any text mode. The maximum number of // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. static encodeBinary(data, ecl) { const seg = qrcodegen2.QrSegment.makeBytes(data); return _QrCode.encodeSegments([seg], ecl); } /*-- Static factory functions (mid level) --*/ // Returns a QR Code representing the given segments with the given encoding parameters. // The smallest possible QR Code version within the given range is automatically // chosen for the output. Iff boostEcl is true, then the ECC level of the result // may be higher than the ecl argument if it can be done without increasing the // version. The mask number is either between 0 to 7 (inclusive) to force that // mask, or -1 to automatically choose an appropriate mask (which may be slow). // This function allows the user to create a custom sequence of segments that switches // between modes (such as alphanumeric and byte) to encode text in less space. // This is a mid-level API; the high-level API is encodeText() and encodeBinary(). static encodeSegments(segs, ecl, minVersion = 1, maxVersion = 40, mask = -1, boostEcl = true) { if (!(_QrCode.MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= _QrCode.MAX_VERSION) || mask < -1 || mask > 7) throw "Invalid value"; let version; let dataUsedBits; for (version = minVersion; ; version++) { const dataCapacityBits2 = _QrCode.getNumDataCodewords(version, ecl) * 8; const usedBits = QrSegment.getTotalBits(segs, version); if (usedBits <= dataCapacityBits2) { dataUsedBits = usedBits; break; } if (version >= maxVersion) throw "Data too long"; } for (const newEcl of [ _QrCode.Ecc.MEDIUM, _QrCode.Ecc.QUARTILE, _QrCode.Ecc.HIGH ]) { if (boostEcl && dataUsedBits <= _QrCode.getNumDataCodewords(version, newEcl) * 8) ecl = newEcl; } let bb = []; for (const seg of segs) { appendBits(seg.mode.modeBits, 4, bb); appendBits(seg.numChars, seg.mode.numCharCountBits(version), bb); for (const b of seg.getData()) bb.push(b); } assert(bb.length == dataUsedBits); const dataCapacityBits = _QrCode.getNumDataCodewords(version, ecl) * 8; assert(bb.length <= dataCapacityBits); appendBits(0, Math.min(4, dataCapacityBits - bb.length), bb); appendBits(0, (8 - bb.length % 8) % 8, bb); assert(bb.length % 8 == 0); for (let padByte = 236; bb.length < dataCapacityBits; padByte ^= 236 ^ 17) appendBits(padByte, 8, bb); let dataCodewords = []; while (dataCodewords.length * 8 < bb.length) dataCodewords.push(0); bb.forEach( (b, i) => dataCodewords[i >>> 3] |= b << 7 - (i & 7) ); return new _QrCode(version, ecl, dataCodewords, mask); } /*-- Accessor methods --*/ // Returns the color of the module (pixel) at the given coordinates, which is false // for light or true for dark. The top left corner has the coordinates (x=0, y=0). // If the given coordinates are out of bounds, then false (light) is returned. getModule(x, y) { return 0 <= x && x < this.size && 0 <= y && y < this.size && this.modules[y][x]; } // Modified to expose modules for easy access getModules() { return this.modules; } /*-- Private helper methods for constructor: Drawing function modules --*/ // Reads this object's version field, and draws and marks all function modules. drawFunctionPatterns() { for (let i = 0; i < this.size; i++) { this.setFunctionModule(6, i, i % 2 == 0); this.setFunctionModule(i, 6, i % 2 == 0); } this.drawFinderPattern(3, 3); this.drawFinderPattern(this.size - 4, 3); this.drawFinderPattern(3, this.size - 4); const alignPatPos = this.getAlignmentPatternPositions(); const numAlign = alignPatPos.length; for (let i = 0; i < numAlign; i++) { for (let j = 0; j < numAlign; j++) { if (!(i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0)) this.drawAlignmentPattern(alignPatPos[i], alignPatPos[j]); } } this.drawFormatBits(0); this.drawVersion(); } // Draws two copies of the format bits (with its own error correction code) // based on the given mask and this object's error correction level field. drawFormatBits(mask) { const data = this.errorCorrectionLevel.formatBits << 3 | mask; let rem = data; for (let i = 0; i < 10; i++) rem = rem << 1 ^ (rem >>> 9) * 1335; const bits = (data << 10 | rem) ^ 21522; assert(bits >>> 15 == 0); for (let i = 0; i <= 5; i++) this.setFunctionModule(8, i, getBit(bits, i)); this.setFunctionModule(8, 7, getBit(bits, 6)); this.setFunctionModule(8, 8, getBit(bits, 7)); this.setFunctionModule(7, 8, getBit(bits, 8)); for (let i = 9; i < 15; i++) this.setFunctionModule(14 - i, 8, getBit(bits, i)); for (let i = 0; i < 8; i++) this.setFunctionModule(this.size - 1 - i, 8, getBit(bits, i)); for (let i = 8; i < 15; i++) this.setFunctionModule(8, this.size - 15 + i, getBit(bits, i)); this.setFunctionModule(8, this.size - 8, true); } // Draws two copies of the version bits (with its own error correction code), // based on this object's version field, iff 7 <= version <= 40. drawVersion() { if (this.version < 7) return; let rem = this.version; for (let i = 0; i < 12; i++) rem = rem << 1 ^ (rem >>> 11) * 7973; const bits = this.version << 12 | rem; assert(bits >>> 18 == 0); for (let i = 0; i < 18; i++) { const color = getBit(bits, i); const a = this.size - 11 + i % 3; const b = Math.floor(i / 3); this.setFunctionModule(a, b, color); this.setFunctionModule(b, a, color); } } // Draws a 9*9 finder pattern including the border separator, // with the center module at (x, y). Modules can be out of bounds. drawFinderPattern(x, y) { for (let dy = -4; dy <= 4; dy++) { for (let dx = -4; dx <= 4; dx++) { const dist = Math.max(Math.abs(dx), Math.abs(dy)); const xx = x + dx; const yy = y + dy; if (0 <= xx && xx < this.size && 0 <= yy && yy < this.size) this.setFunctionModule(xx, yy, dist != 2 && dist != 4); } } } // Draws a 5*5 alignment pattern, with the center module // at (x, y). All modules must be in bounds. drawAlignmentPattern(x, y) { for (let dy = -2; dy <= 2; dy++) { for (let dx = -2; dx <= 2; dx++) this.setFunctionModule( x + dx, y + dy, Math.max(Math.abs(dx), Math.abs(dy)) != 1 ); } } // Sets the color of a module and marks it as a function module. // Only used by the constructor. Coordinates must be in bounds. setFunctionModule(x, y, isDark) { this.modules[y][x] = isDark; this.isFunction[y][x] = true; } /*-- Private helper methods for constructor: Codewords and masking --*/ // Returns a new byte string representing the given data with the appropriate error correction // codewords appended to it, based on this object's version and error correction level. addEccAndInterleave(data) { const ver = this.version; const ecl = this.errorCorrectionLevel; if (data.length != _QrCode.getNumDataCodewords(ver, ecl)) throw "Invalid argument"; const numBlocks = _QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; const blockEccLen = _QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver]; const rawCodewords = Math.floor( _QrCode.getNumRawDataModules(ver) / 8 ); const numShortBlocks = numBlocks - rawCodewords % numBlocks; const shortBlockLen = Math.floor(rawCodewords / numBlocks); let blocks = []; const rsDiv = _QrCode.reedSolomonComputeDivisor(blockEccLen); for (let i = 0, k = 0; i < numBlocks; i++) { let dat = data.slice( k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1) ); k += dat.length; const ecc = _QrCode.reedSolomonComputeRemainder(dat, rsDiv); if (i < numShortBlocks) dat.push(0); blocks.push(dat.concat(ecc)); } let result = []; for (let i = 0; i < blocks[0].length; i++) { blocks.forEach((block, j) => { if (i != shortBlockLen - blockEccLen || j >= numShortBlocks) result.push(block[i]); }); } assert(result.length == rawCodewords); return result; } // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire // data area of this QR Code. Function modules need to be marked off before this is called. drawCodewords(data) { if (data.length != Math.floor(_QrCode.getNumRawDataModules(this.version) / 8)) throw "Invalid argument"; let i = 0; for (let right = this.size - 1; right >= 1; right -= 2) { if (right == 6) right = 5; for (let vert = 0; vert < this.size; vert++) { for (let j = 0; j < 2; j++) { const x = right - j; const upward = (right + 1 & 2) == 0; const y = upward ? this.size - 1 - vert : vert; if (!this.isFunction[y][x] && i < data.length * 8) { this.modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7)); i++; } } } } assert(i == data.length * 8); } // XORs the codeword modules in this QR Code with the given mask pattern. // The function modules must be marked and the codeword bits must be drawn // before masking. Due to the arithmetic of XOR, calling applyMask() with // the same mask value a second time will undo the mask. A final well-formed // QR Code needs exactly one (not zero, two, etc.) mask applied. applyMask(mask) { if (mask < 0 || mask > 7) throw "Mask value out of range"; for (let y = 0; y < this.size; y++) { for (let x = 0; x < this.size; x++) { let invert; switch (mask) { case 0: invert = (x + y) % 2 == 0; break; case 1: invert = y % 2 == 0; break; case 2: invert = x % 3 == 0; break; case 3: invert = (x + y) % 3 == 0; break; case 4: invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0; break; case 5: invert = x * y % 2 + x * y % 3 == 0; break; case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; default: throw "Unreachable"; } if (!this.isFunction[y][x] && invert) this.modules[y][x] = !this.modules[y][x]; } } } // Calculates and returns the penalty score based on state of this QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. getPenaltyScore() { let result = 0; for (let y = 0; y < this.size; y++) { let runColor = false; let runX = 0; let runHistory = [0, 0, 0, 0, 0, 0, 0]; for (let x = 0; x < this.size; x++) { if (this.modules[y][x] == runColor) { runX++; if (runX == 5) result += _QrCode.PENALTY_N1; else if (runX > 5) result++; } else { this.finderPenaltyAddHistory(runX, runHistory); if (!runColor) result += this.finderPenaltyCountPatterns(runHistory) * _QrCode.PENALTY_N3; runColor = this.modules[y][x]; runX = 1; } } result += this.finderPenaltyTerminateAndCount(runColor, runX, runHistory) * _QrCode.PENALTY_N3; } for (let x = 0; x < this.size; x++) { let runColor = false; let runY = 0; let runHistory = [0, 0, 0, 0, 0, 0, 0]; for (let y = 0; y < this.size; y++) { if (this.modules[y][x] == runColor) { runY++; if (runY == 5) result += _QrCode.PENALTY_N1; else if (runY > 5) result++; } else { this.finderPenaltyAddHistory(runY, runHistory); if (!runColor) result += this.finderPenaltyCountPatterns(runHistory) * _QrCode.PENALTY_N3; runColor = this.modules[y][x]; runY = 1; } } result += this.finderPenaltyTerminateAndCount(runColor, runY, runHistory) * _QrCode.PENALTY_N3; } for (let y = 0; y < this.size - 1; y++) { for (let x = 0; x < this.size - 1; x++) { const color = this.modules[y][x]; if (color == this.modules[y][x + 1] && color == this.modules[y + 1][x] && color == this.modules[y + 1][x + 1]) result += _QrCode.PENALTY_N2; } } let dark = 0; for (const row of this.modules) dark = row.reduce((sum, color) => sum + (color ? 1 : 0), dark); const total = this.size * this.size; const k = Math.ceil(Math.abs(dark * 20 - total * 10) / total) - 1; assert(0 <= k && k <= 9); result += k * _QrCode.PENALTY_N4; assert(0 <= result && result <= 2568888); return result; } /*-- Private helper functions --*/ // Returns an ascending list of positions of alignment patterns for this version number. // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of integers. getAlignmentPatternPositions() { if (this.version == 1) return []; else { const numAlign = Math.floor(this.version / 7) + 2; const step = this.version == 32 ? 26 : Math.ceil((this.version * 4 + 4) / (numAlign * 2 - 2)) * 2; let result = [6]; for (let pos = this.size - 7; result.length < numAlign; pos -= step) result.splice(1, 0, pos); return result; } } // Returns the number of data bits that can be stored in a QR Code of the given version number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. static getNumRawDataModules(ver) { if (ver < _QrCode.MIN_VERSION || ver > _QrCode.MAX_VERSION) throw "Version number out of range"; let result = (16 * ver + 128) * ver + 64; if (ver >= 2) { const numAlign = Math.floor(ver / 7) + 2; result -= (25 * numAlign - 10) * numAlign - 55; if (ver >= 7) result -= 36; } assert(208 <= result && result <= 29648); return result; } // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any // QR Code of the given version number and error correction level, with remainder bits discarded. // This stateless pure function could be implemented as a (40*4)-cell lookup table. static getNumDataCodewords(ver, ecl) { return Math.floor(_QrCode.getNumRawDataModules(ver) / 8) - _QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver] * _QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; } // Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be // implemented as a lookup table over all possible parameter values, instead of as an algorithm. static reedSolomonComputeDivisor(degree) { if (degree < 1 || degree > 255) throw "Degree out of range"; let result = []; for (let i = 0; i < degree - 1; i++) result.push(0); result.push(1); let root = 1; for (let i = 0; i < degree; i++) { for (let j = 0; j < result.length; j++) { result[j] = _QrCode.reedSolomonMultiply(result[j], root); if (j + 1 < result.length) result[j] ^= result[j + 1]; } root = _QrCode.reedSolomonMultiply(root, 2); } return result; } // Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials. static reedSolomonComputeRemainder(data, divisor) { let result = divisor.map((_) => 0); for (const b of data) { const factor = b ^ result.shift(); result.push(0); divisor.forEach( (coef, i) => result[i] ^= _QrCode.reedSolomonMultiply(coef, factor) ); } return result; } // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. static reedSolomonMultiply(x, y) { if (x >>> 8 != 0 || y >>> 8 != 0) throw "Byte out of range"; let z = 0; for (let i = 7; i >= 0; i--) { z = z << 1 ^ (z >>> 7) * 285; z ^= (y >>> i & 1) * x; } assert(z >>> 8 == 0); return z; } // Can only be called immediately after a light run is added, and // returns either 0, 1, or 2. A helper function for getPenaltyScore(). finderPenaltyCountPatterns(runHistory) { const n = runHistory[1]; assert(n <= this.size * 3); const core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n; return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0); } // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore(). finderPenaltyTerminateAndCount(currentRunColor, currentRunLength, runHistory) { if (currentRunColor) { this.finderPenaltyAddHistory(currentRunLength, runHistory); currentRunLength = 0; } currentRunLength += this.size; this.finderPenaltyAddHistory(currentRunLength, runHistory); return this.finderPenaltyCountPatterns(runHistory); } // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore(). finderPenaltyAddHistory(currentRunLength, runHistory) { if (runHistory[0] == 0) currentRunLength += this.size; runHistory.pop(); runHistory.unshift(currentRunLength); } }; /*-- Constants and tables --*/ // The minimum version number supported in the QR Code Model 2 standard. __publicField(_QrCode, "MIN_VERSION", 1); // The maximum version number supported in the QR Code Model 2 standard. __publicField(_QrCode, "MAX_VERSION", 40); // For use in getPenaltyScore(), when evaluating which mask is best. __publicField(_QrCode, "PENALTY_N1", 3); __publicField(_QrCode, "PENALTY_N2", 3); __publicField(_QrCode, "PENALTY_N3", 40); __publicField(_QrCode, "PENALTY_N4", 10); __publicField(_QrCode, "ECC_CODEWORDS_PER_BLOCK", [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [ -1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30 ], // Low [ -1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ], // Medium [ -1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30 ], // Quartile [ -1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30 ] // High ]); __publicField(_QrCode, "NUM_ERROR_CORRECTION_BLOCKS", [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [ -1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25 ], // Low [ -1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49 ], // Medium [ -1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68 ], // Quartile [ -1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81 ] // High ]); let QrCode = _QrCode; qrcodegen2.QrCode = QrCode; function appendBits(val, len, bb) { if (len < 0 || len > 31 || val >>> len != 0) throw "Value out of range"; for (let i = len - 1; i >= 0; i--) bb.push(val >>> i & 1); } function getBit(x, i) { return (x >>> i & 1) != 0; } function assert(cond) { if (!cond) throw "Assertion error"; } const _QrSegment = class _QrSegment { /*-- Constructor (low level) and fields --*/ // Creates a new QR Code segment with the given attributes and data. // The character count (numChars) must agree with the mode and the bit buffer length, // but the constraint isn't checked. The given bit buffer is cloned and stored. constructor(mode, numChars, bitData) { this.mode = mode; this.numChars = numChars; this.bitData = bitData; if (numChars < 0) throw "Invalid argument"; this.bitData = bitData.slice(); } /*-- Static factory functions (mid level) --*/ // Returns a segment representing the given binary data encoded in // byte mode. All input byte arrays are acceptable. Any text string // can be converted to UTF-8 bytes and encoded as a byte mode segment. static makeBytes(data) { let bb = []; for (const b of data) appendBits(b, 8, bb); return new _QrSegment(_QrSegment.Mode.BYTE, data.length, bb); } // Returns a segment representing the given string of decimal digits encoded in numeric mode. static makeNumeric(digits) { if (!_QrSegment.isNumeric(digits)) throw "String contains non-numeric characters"; let bb = []; for (let i = 0; i < digits.length; ) { const n = Math.min(digits.length - i, 3); appendBits(Number.parseInt(digits.substr(i, n), 10), n * 3 + 1, bb); i += n; } return new _QrSegment(_QrSegment.Mode.NUMERIC, digits.length, bb); } // Returns a segment representing the given text string encoded in alphanumeric mode. // The characters allowed are: 0 to 9, A to Z (uppercase only), space, // dollar, percent, asterisk, plus, hyphen, period, slash, colon. static makeAlphanumeric(text) { if (!_QrSegment.isAlphanumeric(text)) throw "String contains unencodable characters in alphanumeric mode"; let bb = []; let i; for (i = 0; i + 2 <= text.length; i += 2) { let temp = _QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45; temp += _QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1)); appendBits(temp, 11, bb); } if (i < text.length) appendBits( _QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)), 6, bb ); return new _QrSegment(_QrSegment.Mode.ALPHANUMERIC, text.length, bb); } // Returns a new mutable list of zero or more segments to represent the given Unicode text string. // The result may use various segment modes and switch modes to optimize the length of the bit stream. static makeSegments(text) { if (text == "") return []; else if (_QrSegment.isNumeric(text)) return [_QrSegment.makeNumeric(text)]; else if (_QrSegment.isAlphanumeric(text)) return [_QrSegment.makeAlphanumeric(text)]; else return [_QrSegment.makeBytes(_QrSegment.toUtf8ByteArray(text))]; } // Returns a segment representing an Extended Channel Interpretation // (ECI) designator with the given assignment value. static makeEci(assignVal) { let bb = []; if (assignVal < 0) throw "ECI assignment value out of range"; else if (assignVal < 1 << 7) appendBits(assignVal, 8, bb); else if (assignVal < 1 << 14) { appendBits(2, 2, bb); appendBits(assignVal, 14, bb); } else if (assignVal < 1e6) { appendBits(6, 3, bb); appendBits(assignVal, 21, bb); } else throw "ECI assignment value out of range"; return new _QrSegment(_QrSegment.Mode.ECI, 0, bb); } // Tests whether the given string can be encoded as a segment in numeric mode. // A string is encodable iff each character is in the range 0 to 9. static isNumeric(text) { return _QrSegment.NUMERIC_REGEX.test(text); } // Tests whether the given string can be encoded as a segment in alphanumeric mode. // A string is encodable iff each character is in the following set: 0 to 9, A to Z // (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. static isAlphanumeric(text) { return _QrSegment.ALPHANUMERIC_REGEX.test(text); } /*-- Methods --*/ // Returns a new copy of the data bits of this segment. getData() { return this.bitData.slice(); } // (Package-private) Calculates and returns the number of bits needed to encode the given segments at // the given version. The result is infinity if a segment has too many characters to fit its length field. static getTotalBits(segs, version) { let result = 0; for (const seg of segs) { const ccbits = seg.mode.numCharCountBits(version); if (seg.numChars >= 1 << ccbits) return Infinity; result += 4 + ccbits + seg.bitData.length; } return result; } // Returns a new array of bytes representing the given string encoded in UTF-8. static toUtf8ByteArray(str) { str = encodeURI(str); let result = []; for (let i = 0; i < str.length; i++) { if (str.charAt(i) != "%") result.push(str.charCodeAt(i)); else { result.push(Number.parseInt(str.substr(i + 1, 2), 16)); i += 2; } } return result; } }; /*-- Constants --*/ // Describes precisely all strings that are encodable in numeric mode. __publicField(_QrSegment, "NUMERIC_REGEX", /^[0-9]*$/); // Describes precisely all strings that are encodable in alphanumeric mode. __publicField(_QrSegment, "ALPHANUMERIC_REGEX", /^[A-Z0-9 $%*+.\/:-]*$/); // The set of all legal characters in alphanumeric mode, // where each character value maps to the index in the string. __publicField(_QrSegment, "ALPHANUMERIC_CHARSET", "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"); let QrSegment = _QrSegment; qrcodegen2.QrSegment = QrSegment; })(qrcodegen || (qrcodegen = {})); ((qrcodegen2) => { ((QrCode2) => { const _Ecc = class _Ecc { // The QR Code can tolerate about 30% erroneous codewords /*-- Constructor and fields --*/ constructor(ordinal, formatBits) { this.ordinal = ordinal; this.formatBits = formatBits; } }; /*-- Constants --*/ __publicField(_Ecc, "LOW", new _Ecc(0, 1)); // The QR Code can tolerate about 7% erroneous codewords __publicField(_Ecc, "MEDIUM", new _Ecc(1, 0)); // The QR Code can tolerate about 15% erroneous codewords __publicField(_Ecc, "QUARTILE", new _Ecc(2, 3)); // The QR Code can tolerate about 25% erroneous codewords __publicField(_Ecc, "HIGH", new _Ecc(3, 2)); let Ecc = _Ecc; QrCode2.Ecc = Ecc; })(qrcodegen2.QrCode || (qrcodegen2.QrCode = {})); })(qrcodegen || (qrcodegen = {})); ((qrcodegen2) => { ((QrSegment2) => { const _Mode = class _Mode { /*-- Constructor and fields --*/ constructor(modeBits, numBitsCharCount) { this.modeBits = modeBits; this.numBitsCharCount = numBitsCharCount; } /*-- Method --*/ // (Package-private) Returns the bit width of the character count field for a segment in // this mode in a QR Code at the given version number. The result is in the range [0, 16]. numCharCountBits(ver) { return this.numBitsCharCount[Math.floor((ver + 7) / 17)]; } }; /*-- Constants --*/ __publicField(_Mode, "NUMERIC", new _Mode(1, [10, 12, 14])); __publicField(_Mode, "ALPHANUMERIC", new _Mode(2, [9, 11, 13])); __publicField(_Mode, "BYTE", new _Mode(4, [8, 16, 16])); __publicField(_Mode, "KANJI", new _Mode(8, [8, 10, 12])); __publicField(_Mode, "ECI", new _Mode(7, [0, 0, 0])); let Mode = _Mode; QrSegment2.Mode = Mode; })(qrcodegen2.QrSegment || (qrcodegen2.QrSegment = {})); })(qrcodegen || (qrcodegen = {})); const qrcodegen$1 = qrcodegen; module.exports = qrcodegen$1;