UNPKG

xdb-digitalbits-base

Version:
63 lines (51 loc) 2.38 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var _slicedToArray = function () { function sliceIterator(arr, i) { var _arr = []; var _n = true; var _d = false; var _e = undefined; try { for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"]) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } return function (arr, i) { if (Array.isArray(arr)) { return arr; } else if (Symbol.iterator in Object(arr)) { return sliceIterator(arr, i); } else { throw new TypeError("Invalid attempt to destructure non-iterable instance"); } }; }(); exports.best_r = best_r; var _bignumber = require("bignumber.js"); var _bignumber2 = _interopRequireDefault(_bignumber); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } // eslint-disable-next-line no-bitwise var MAX_INT = (1 << 31 >>> 0) - 1; /** * Calculates and returns the best rational approximation of the given real number. * @private * @param {string|number|BigNumber} rawNumber Real number * @throws Error Throws `Error` when the best rational approximation cannot be found. * @returns {array} first element is n (numerator), second element is d (denominator) */ function best_r(rawNumber) { var number = new _bignumber2.default(rawNumber); var a = void 0; var f = void 0; var fractions = [[new _bignumber2.default(0), new _bignumber2.default(1)], [new _bignumber2.default(1), new _bignumber2.default(0)]]; var i = 2; // eslint-disable-next-line no-constant-condition while (true) { if (number.gt(MAX_INT)) { break; } a = number.floor(); f = number.sub(a); var h = a.mul(fractions[i - 1][0]).add(fractions[i - 2][0]); var k = a.mul(fractions[i - 1][1]).add(fractions[i - 2][1]); if (h.gt(MAX_INT) || k.gt(MAX_INT)) { break; } fractions.push([h, k]); if (f.eq(0)) { break; } number = new _bignumber2.default(1).div(f); i += 1; } var _fractions = _slicedToArray(fractions[fractions.length - 1], 2), n = _fractions[0], d = _fractions[1]; if (n.isZero() || d.isZero()) { throw new Error("Couldn't find approximation"); } return [n.toNumber(), d.toNumber()]; }