UNPKG

webdnn

Version:

Deep Neural Network Execution Framework for Web Browsers

58 lines (41 loc) 1.33 kB
# Docker container of webdnn ## Example usage ### Create container ``` docker run -it --name webdnn-container -p 8000:8000 -v /path/to/webdnn:/root/mount milhidaka/webdnn ``` The following commands are supposed to be run inside container. Deep learning package for your model have to be installed (not included because they are very large). ### Tensorflow ``` pip3 install tensorflow==1.12.0 ``` ### Keras (Tensorflow backend) ``` pip3 install tensorflow==1.12.0 keras==2.2.4 ``` ### Chainer ``` pip3 install chainer==4.4.0 ``` ### PyTorch ``` pip3 install http://download.pytorch.org/whl/cpu/torch-0.4.1-cp36-cp36m-linux_x86_64.whl torchvision==0.2.1 onnx==1.3.0 ``` ### Convert example model ``` cd /root/mount/example/mnist python3 train_mnist_tensorflow.py ``` (`tensorflow` changes if you installed another framework.) Note: you will see the following warning, but it is expected because `xcrun` is only in mac OS. ``` Warning: [WebGPUDescriptorGenerator] 'xcrun' command is not found. validation of generated source code in webgpu backend is skipped. ``` ### Run example on web browser Run HTTP server on the container. ``` cd /root/mount python3 -m http.server ``` Now, you can see the example from web browser in the host by accessing [http://localhost:8000/example/mnist](http://localhost:8000/example/mnist).