web-tree-sitter
Version:
Tree-sitter bindings for the web
646 lines (577 loc) • 19.7 kB
text/typescript
import { INTERNAL, Internal, assertInternal, Point, Edit, SIZE_OF_INT, SIZE_OF_NODE, SIZE_OF_POINT, ZERO_POINT, isPoint, C } from './constants';
import { getText, Tree } from './tree';
import { TreeCursor } from './tree_cursor';
// eslint-disable-next-line @typescript-eslint/no-unused-vars
import { Language } from './language';
import { marshalNode, marshalPoint, unmarshalNode, unmarshalPoint } from './marshal';
import { TRANSFER_BUFFER } from './parser';
/** A single node within a syntax {@link Tree}. */
export class Node {
/** @internal */
private [0] = 0; // Internal handle for WASM
/** @internal */
private _children?: (Node | null)[];
/** @internal */
private _namedChildren?: (Node | null)[];
/** @internal */
constructor(
internal: Internal,
{
id,
tree,
startIndex,
startPosition,
other,
}: {
id: number;
tree: Tree;
startIndex: number;
startPosition: Point;
other: number;
}
) {
assertInternal(internal);
this[0] = other;
this.id = id;
this.tree = tree;
this.startIndex = startIndex;
this.startPosition = startPosition;
}
/**
* The numeric id for this node that is unique.
*
* Within a given syntax tree, no two nodes have the same id. However:
*
* * If a new tree is created based on an older tree, and a node from the old tree is reused in
* the process, then that node will have the same id in both trees.
*
* * A node not marked as having changes does not guarantee it was reused.
*
* * If a node is marked as having changed in the old tree, it will not be reused.
*/
id: number;
/** The byte index where this node starts. */
startIndex: number;
/** The position where this node starts. */
startPosition: Point;
/** The tree that this node belongs to. */
tree: Tree;
/** Get this node's type as a numerical id. */
get typeId(): number {
marshalNode(this);
return C._ts_node_symbol_wasm(this.tree[0]);
}
/**
* Get the node's type as a numerical id as it appears in the grammar,
* ignoring aliases.
*/
get grammarId(): number {
marshalNode(this);
return C._ts_node_grammar_symbol_wasm(this.tree[0]);
}
/** Get this node's type as a string. */
get type(): string {
return this.tree.language.types[this.typeId] || 'ERROR';
}
/**
* Get this node's symbol name as it appears in the grammar, ignoring
* aliases as a string.
*/
get grammarType(): string {
return this.tree.language.types[this.grammarId] || 'ERROR';
}
/**
* Check if this node is *named*.
*
* Named nodes correspond to named rules in the grammar, whereas
* *anonymous* nodes correspond to string literals in the grammar.
*/
get isNamed(): boolean {
marshalNode(this);
return C._ts_node_is_named_wasm(this.tree[0]) === 1;
}
/**
* Check if this node is *extra*.
*
* Extra nodes represent things like comments, which are not required
* by the grammar, but can appear anywhere.
*/
get isExtra(): boolean {
marshalNode(this);
return C._ts_node_is_extra_wasm(this.tree[0]) === 1;
}
/**
* Check if this node represents a syntax error.
*
* Syntax errors represent parts of the code that could not be incorporated
* into a valid syntax tree.
*/
get isError(): boolean {
marshalNode(this);
return C._ts_node_is_error_wasm(this.tree[0]) === 1;
}
/**
* Check if this node is *missing*.
*
* Missing nodes are inserted by the parser in order to recover from
* certain kinds of syntax errors.
*/
get isMissing(): boolean {
marshalNode(this);
return C._ts_node_is_missing_wasm(this.tree[0]) === 1;
}
/** Check if this node has been edited. */
get hasChanges(): boolean {
marshalNode(this);
return C._ts_node_has_changes_wasm(this.tree[0]) === 1;
}
/**
* Check if this node represents a syntax error or contains any syntax
* errors anywhere within it.
*/
get hasError(): boolean {
marshalNode(this);
return C._ts_node_has_error_wasm(this.tree[0]) === 1;
}
/** Get the byte index where this node ends. */
get endIndex(): number {
marshalNode(this);
return C._ts_node_end_index_wasm(this.tree[0]);
}
/** Get the position where this node ends. */
get endPosition(): Point {
marshalNode(this);
C._ts_node_end_point_wasm(this.tree[0]);
return unmarshalPoint(TRANSFER_BUFFER);
}
/** Get the string content of this node. */
get text(): string {
return getText(this.tree, this.startIndex, this.endIndex, this.startPosition);
}
/** Get this node's parse state. */
get parseState(): number {
marshalNode(this);
return C._ts_node_parse_state_wasm(this.tree[0]);
}
/** Get the parse state after this node. */
get nextParseState(): number {
marshalNode(this);
return C._ts_node_next_parse_state_wasm(this.tree[0]);
}
/** Check if this node is equal to another node. */
equals(other: Node): boolean {
return this.tree === other.tree && this.id === other.id;
}
/**
* Get the node's child at the given index, where zero represents the first child.
*
* This method is fairly fast, but its cost is technically log(n), so if
* you might be iterating over a long list of children, you should use
* {@link Node#children} instead.
*/
child(index: number): Node | null {
marshalNode(this);
C._ts_node_child_wasm(this.tree[0], index);
return unmarshalNode(this.tree);
}
/**
* Get this node's *named* child at the given index.
*
* See also {@link Node#isNamed}.
* This method is fairly fast, but its cost is technically log(n), so if
* you might be iterating over a long list of children, you should use
* {@link Node#namedChildren} instead.
*/
namedChild(index: number): Node | null {
marshalNode(this);
C._ts_node_named_child_wasm(this.tree[0], index);
return unmarshalNode(this.tree);
}
/**
* Get this node's child with the given numerical field id.
*
* See also {@link Node#childForFieldName}. You can
* convert a field name to an id using {@link Language#fieldIdForName}.
*/
childForFieldId(fieldId: number): Node | null {
marshalNode(this);
C._ts_node_child_by_field_id_wasm(this.tree[0], fieldId);
return unmarshalNode(this.tree);
}
/**
* Get the first child with the given field name.
*
* If multiple children may have the same field name, access them using
* {@link Node#childrenForFieldName}.
*/
childForFieldName(fieldName: string): Node | null {
const fieldId = this.tree.language.fields.indexOf(fieldName);
if (fieldId !== -1) return this.childForFieldId(fieldId);
return null;
}
/** Get the field name of this node's child at the given index. */
fieldNameForChild(index: number): string | null {
marshalNode(this);
const address = C._ts_node_field_name_for_child_wasm(this.tree[0], index);
if (!address) return null;
return C.AsciiToString(address);
}
/** Get the field name of this node's named child at the given index. */
fieldNameForNamedChild(index: number): string | null {
marshalNode(this);
const address = C._ts_node_field_name_for_named_child_wasm(this.tree[0], index);
if (!address) return null;
return C.AsciiToString(address);
}
/**
* Get an array of this node's children with a given field name.
*
* See also {@link Node#children}.
*/
childrenForFieldName(fieldName: string): (Node | null)[] {
const fieldId = this.tree.language.fields.indexOf(fieldName);
if (fieldId !== -1 && fieldId !== 0) return this.childrenForFieldId(fieldId);
return [];
}
/**
* Get an array of this node's children with a given field id.
*
* See also {@link Node#childrenForFieldName}.
*/
childrenForFieldId(fieldId: number): (Node | null)[] {
marshalNode(this);
C._ts_node_children_by_field_id_wasm(this.tree[0], fieldId);
const count = C.getValue(TRANSFER_BUFFER, 'i32');
const buffer = C.getValue(TRANSFER_BUFFER + SIZE_OF_INT, 'i32');
const result = new Array<Node | null>(count);
if (count > 0) {
let address = buffer;
for (let i = 0; i < count; i++) {
result[i] = unmarshalNode(this.tree, address);
address += SIZE_OF_NODE;
}
C._free(buffer);
}
return result;
}
/** Get the node's first child that contains or starts after the given byte offset. */
firstChildForIndex(index: number): Node | null {
marshalNode(this);
const address = TRANSFER_BUFFER + SIZE_OF_NODE;
C.setValue(address, index, 'i32');
C._ts_node_first_child_for_byte_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/** Get the node's first named child that contains or starts after the given byte offset. */
firstNamedChildForIndex(index: number): Node | null {
marshalNode(this);
const address = TRANSFER_BUFFER + SIZE_OF_NODE;
C.setValue(address, index, 'i32');
C._ts_node_first_named_child_for_byte_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/** Get this node's number of children. */
get childCount(): number {
marshalNode(this);
return C._ts_node_child_count_wasm(this.tree[0]);
}
/**
* Get this node's number of *named* children.
*
* See also {@link Node#isNamed}.
*/
get namedChildCount(): number {
marshalNode(this);
return C._ts_node_named_child_count_wasm(this.tree[0]);
}
/** Get this node's first child. */
get firstChild(): Node | null {
return this.child(0);
}
/**
* Get this node's first named child.
*
* See also {@link Node#isNamed}.
*/
get firstNamedChild(): Node | null {
return this.namedChild(0);
}
/** Get this node's last child. */
get lastChild(): Node | null {
return this.child(this.childCount - 1);
}
/**
* Get this node's last named child.
*
* See also {@link Node#isNamed}.
*/
get lastNamedChild(): Node | null {
return this.namedChild(this.namedChildCount - 1);
}
/**
* Iterate over this node's children.
*
* If you're walking the tree recursively, you may want to use the
* {@link TreeCursor} APIs directly instead.
*/
get children(): (Node | null)[] {
if (!this._children) {
marshalNode(this);
C._ts_node_children_wasm(this.tree[0]);
const count = C.getValue(TRANSFER_BUFFER, 'i32');
const buffer = C.getValue(TRANSFER_BUFFER + SIZE_OF_INT, 'i32');
this._children = new Array<Node>(count);
if (count > 0) {
let address = buffer;
for (let i = 0; i < count; i++) {
this._children[i] = unmarshalNode(this.tree, address);
address += SIZE_OF_NODE;
}
C._free(buffer);
}
}
return this._children;
}
/**
* Iterate over this node's named children.
*
* See also {@link Node#children}.
*/
get namedChildren(): (Node | null)[] {
if (!this._namedChildren) {
marshalNode(this);
C._ts_node_named_children_wasm(this.tree[0]);
const count = C.getValue(TRANSFER_BUFFER, 'i32');
const buffer = C.getValue(TRANSFER_BUFFER + SIZE_OF_INT, 'i32');
this._namedChildren = new Array<Node>(count);
if (count > 0) {
let address = buffer;
for (let i = 0; i < count; i++) {
this._namedChildren[i] = unmarshalNode(this.tree, address);
address += SIZE_OF_NODE;
}
C._free(buffer);
}
}
return this._namedChildren;
}
/**
* Get the descendants of this node that are the given type, or in the given types array.
*
* The types array should contain node type strings, which can be retrieved from {@link Language#types}.
*
* Additionally, a `startPosition` and `endPosition` can be passed in to restrict the search to a byte range.
*/
descendantsOfType(
types: string | string[],
startPosition: Point = ZERO_POINT,
endPosition: Point = ZERO_POINT
): (Node | null)[] {
if (!Array.isArray(types)) types = [types];
// Convert the type strings to numeric type symbols
const symbols: number[] = [];
const typesBySymbol = this.tree.language.types;
for (const node_type of types) {
if (node_type == "ERROR") {
symbols.push(65535); // Internally, ts_builtin_sym_error is -1, which is UINT_16MAX
}
}
for (let i = 0, n = typesBySymbol.length; i < n; i++) {
if (types.includes(typesBySymbol[i])) {
symbols.push(i);
}
}
// Copy the array of symbols to the WASM heap
const symbolsAddress = C._malloc(SIZE_OF_INT * symbols.length);
for (let i = 0, n = symbols.length; i < n; i++) {
C.setValue(symbolsAddress + i * SIZE_OF_INT, symbols[i], 'i32');
}
// Call the C API to compute the descendants
marshalNode(this);
C._ts_node_descendants_of_type_wasm(
this.tree[0],
symbolsAddress,
symbols.length,
startPosition.row,
startPosition.column,
endPosition.row,
endPosition.column
);
// Instantiate the nodes based on the data returned
const descendantCount = C.getValue(TRANSFER_BUFFER, 'i32');
const descendantAddress = C.getValue(TRANSFER_BUFFER + SIZE_OF_INT, 'i32');
const result = new Array<Node | null>(descendantCount);
if (descendantCount > 0) {
let address = descendantAddress;
for (let i = 0; i < descendantCount; i++) {
result[i] = unmarshalNode(this.tree, address);
address += SIZE_OF_NODE;
}
}
// Free the intermediate buffers
C._free(descendantAddress);
C._free(symbolsAddress);
return result;
}
/** Get this node's next sibling. */
get nextSibling(): Node | null {
marshalNode(this);
C._ts_node_next_sibling_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/** Get this node's previous sibling. */
get previousSibling(): Node | null {
marshalNode(this);
C._ts_node_prev_sibling_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/**
* Get this node's next *named* sibling.
*
* See also {@link Node#isNamed}.
*/
get nextNamedSibling(): Node | null {
marshalNode(this);
C._ts_node_next_named_sibling_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/**
* Get this node's previous *named* sibling.
*
* See also {@link Node#isNamed}.
*/
get previousNamedSibling(): Node | null {
marshalNode(this);
C._ts_node_prev_named_sibling_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/** Get the node's number of descendants, including one for the node itself. */
get descendantCount(): number {
marshalNode(this);
return C._ts_node_descendant_count_wasm(this.tree[0]);
}
/**
* Get this node's immediate parent.
* Prefer {@link Node#childWithDescendant} for iterating over this node's ancestors.
*/
get parent(): Node | null {
marshalNode(this);
C._ts_node_parent_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/**
* Get the node that contains `descendant`.
*
* Note that this can return `descendant` itself.
*/
childWithDescendant(descendant: Node): Node | null {
marshalNode(this);
marshalNode(descendant, 1);
C._ts_node_child_with_descendant_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/** Get the smallest node within this node that spans the given byte range. */
descendantForIndex(start: number, end: number = start): Node | null {
if (typeof start !== 'number' || typeof end !== 'number') {
throw new Error('Arguments must be numbers');
}
marshalNode(this);
const address = TRANSFER_BUFFER + SIZE_OF_NODE;
C.setValue(address, start, 'i32');
C.setValue(address + SIZE_OF_INT, end, 'i32');
C._ts_node_descendant_for_index_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/** Get the smallest named node within this node that spans the given byte range. */
namedDescendantForIndex(start: number, end: number = start): Node | null {
if (typeof start !== 'number' || typeof end !== 'number') {
throw new Error('Arguments must be numbers');
}
marshalNode(this);
const address = TRANSFER_BUFFER + SIZE_OF_NODE;
C.setValue(address, start, 'i32');
C.setValue(address + SIZE_OF_INT, end, 'i32');
C._ts_node_named_descendant_for_index_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/** Get the smallest node within this node that spans the given point range. */
descendantForPosition(start: Point, end: Point = start) {
if (!isPoint(start) || !isPoint(end)) {
throw new Error('Arguments must be {row, column} objects');
}
marshalNode(this);
const address = TRANSFER_BUFFER + SIZE_OF_NODE;
marshalPoint(address, start);
marshalPoint(address + SIZE_OF_POINT, end);
C._ts_node_descendant_for_position_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/** Get the smallest named node within this node that spans the given point range. */
namedDescendantForPosition(start: Point, end: Point = start) {
if (!isPoint(start) || !isPoint(end)) {
throw new Error('Arguments must be {row, column} objects');
}
marshalNode(this);
const address = TRANSFER_BUFFER + SIZE_OF_NODE;
marshalPoint(address, start);
marshalPoint(address + SIZE_OF_POINT, end);
C._ts_node_named_descendant_for_position_wasm(this.tree[0]);
return unmarshalNode(this.tree);
}
/**
* Create a new {@link TreeCursor} starting from this node.
*
* Note that the given node is considered the root of the cursor,
* and the cursor cannot walk outside this node.
*/
walk(): TreeCursor {
marshalNode(this);
C._ts_tree_cursor_new_wasm(this.tree[0]);
return new TreeCursor(INTERNAL, this.tree);
}
/**
* Edit this node to keep it in-sync with source code that has been edited.
*
* This function is only rarely needed. When you edit a syntax tree with
* the {@link Tree#edit} method, all of the nodes that you retrieve from
* the tree afterward will already reflect the edit. You only need to
* use {@link Node#edit} when you have a specific {@link Node} instance that
* you want to keep and continue to use after an edit.
*/
edit(edit: Edit) {
if (this.startIndex >= edit.oldEndIndex) {
this.startIndex = edit.newEndIndex + (this.startIndex - edit.oldEndIndex);
let subbedPointRow;
let subbedPointColumn;
if (this.startPosition.row > edit.oldEndPosition.row) {
subbedPointRow = this.startPosition.row - edit.oldEndPosition.row;
subbedPointColumn = this.startPosition.column;
} else {
subbedPointRow = 0;
subbedPointColumn = this.startPosition.column;
if (this.startPosition.column >= edit.oldEndPosition.column) {
subbedPointColumn =
this.startPosition.column - edit.oldEndPosition.column;
}
}
if (subbedPointRow > 0) {
this.startPosition.row += subbedPointRow;
this.startPosition.column = subbedPointColumn;
} else {
this.startPosition.column += subbedPointColumn;
}
} else if (this.startIndex > edit.startIndex) {
this.startIndex = edit.newEndIndex;
this.startPosition.row = edit.newEndPosition.row;
this.startPosition.column = edit.newEndPosition.column;
}
}
/** Get the S-expression representation of this node. */
toString() {
marshalNode(this);
const address = C._ts_node_to_string_wasm(this.tree[0]);
const result = C.AsciiToString(address);
C._free(address);
return result;
}
}