war3-model-docs
Version:
Warcraft 3 model parser, generator, convertor and previewer
41 lines (33 loc) • 441 kB
JavaScript
/*
* ATTENTION: The "eval" devtool has been used (maybe by default in mode: "development").
* This devtool is neither made for production nor for readable output files.
* It uses "eval()" calls to create a separate source file in the browser devtools.
* If you are trying to read the output file, select a different devtool (https://webpack.js.org/configuration/devtool/)
* or disable the default devtool with "devtool: false".
* If you are looking for production-ready output files, see mode: "production" (https://webpack.js.org/configuration/mode/).
*/
/******/ (() => { // webpackBootstrap
/******/ var __webpack_modules__ = ({
/***/ "./node_modules/gl-matrix/esm/common.js":
/*!**********************************************!*\
!*** ./node_modules/gl-matrix/esm/common.js ***!
\**********************************************/
/***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
"use strict";
eval("__webpack_require__.r(__webpack_exports__);\n/* harmony export */ __webpack_require__.d(__webpack_exports__, {\n/* harmony export */ \"EPSILON\": () => (/* binding */ EPSILON),\n/* harmony export */ \"ARRAY_TYPE\": () => (/* binding */ ARRAY_TYPE),\n/* harmony export */ \"RANDOM\": () => (/* binding */ RANDOM),\n/* harmony export */ \"setMatrixArrayType\": () => (/* binding */ setMatrixArrayType),\n/* harmony export */ \"toRadian\": () => (/* binding */ toRadian),\n/* harmony export */ \"equals\": () => (/* binding */ equals)\n/* harmony export */ });\n/**\r\n * Common utilities\r\n * @module glMatrix\r\n */\n// Configuration Constants\nvar EPSILON = 0.000001;\nvar ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;\nvar RANDOM = Math.random;\n/**\r\n * Sets the type of array used when creating new vectors and matrices\r\n *\r\n * @param {Float32ArrayConstructor | ArrayConstructor} type Array type, such as Float32Array or Array\r\n */\n\nfunction setMatrixArrayType(type) {\n ARRAY_TYPE = type;\n}\nvar degree = Math.PI / 180;\n/**\r\n * Convert Degree To Radian\r\n *\r\n * @param {Number} a Angle in Degrees\r\n */\n\nfunction toRadian(a) {\n return a * degree;\n}\n/**\r\n * Tests whether or not the arguments have approximately the same value, within an absolute\r\n * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less\r\n * than or equal to 1.0, and a relative tolerance is used for larger values)\r\n *\r\n * @param {Number} a The first number to test.\r\n * @param {Number} b The second number to test.\r\n * @returns {Boolean} True if the numbers are approximately equal, false otherwise.\r\n */\n\nfunction equals(a, b) {\n return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));\n}\nif (!Math.hypot) Math.hypot = function () {\n var y = 0,\n i = arguments.length;\n\n while (i--) {\n y += arguments[i] * arguments[i];\n }\n\n return Math.sqrt(y);\n};\n\n//# sourceURL=webpack://war3-model-docs/./node_modules/gl-matrix/esm/common.js?");
/***/ }),
/***/ "./node_modules/gl-matrix/esm/mat3.js":
/*!********************************************!*\
!*** ./node_modules/gl-matrix/esm/mat3.js ***!
\********************************************/
/***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
"use strict";
eval("__webpack_require__.r(__webpack_exports__);\n/* harmony export */ __webpack_require__.d(__webpack_exports__, {\n/* harmony export */ \"create\": () => (/* binding */ create),\n/* harmony export */ \"fromMat4\": () => (/* binding */ fromMat4),\n/* harmony export */ \"clone\": () => (/* binding */ clone),\n/* harmony export */ \"copy\": () => (/* binding */ copy),\n/* harmony export */ \"fromValues\": () => (/* binding */ fromValues),\n/* harmony export */ \"set\": () => (/* binding */ set),\n/* harmony export */ \"identity\": () => (/* binding */ identity),\n/* harmony export */ \"transpose\": () => (/* binding */ transpose),\n/* harmony export */ \"invert\": () => (/* binding */ invert),\n/* harmony export */ \"adjoint\": () => (/* binding */ adjoint),\n/* harmony export */ \"determinant\": () => (/* binding */ determinant),\n/* harmony export */ \"multiply\": () => (/* binding */ multiply),\n/* harmony export */ \"translate\": () => (/* binding */ translate),\n/* harmony export */ \"rotate\": () => (/* binding */ rotate),\n/* harmony export */ \"scale\": () => (/* binding */ scale),\n/* harmony export */ \"fromTranslation\": () => (/* binding */ fromTranslation),\n/* harmony export */ \"fromRotation\": () => (/* binding */ fromRotation),\n/* harmony export */ \"fromScaling\": () => (/* binding */ fromScaling),\n/* harmony export */ \"fromMat2d\": () => (/* binding */ fromMat2d),\n/* harmony export */ \"fromQuat\": () => (/* binding */ fromQuat),\n/* harmony export */ \"normalFromMat4\": () => (/* binding */ normalFromMat4),\n/* harmony export */ \"projection\": () => (/* binding */ projection),\n/* harmony export */ \"str\": () => (/* binding */ str),\n/* harmony export */ \"frob\": () => (/* binding */ frob),\n/* harmony export */ \"add\": () => (/* binding */ add),\n/* harmony export */ \"subtract\": () => (/* binding */ subtract),\n/* harmony export */ \"multiplyScalar\": () => (/* binding */ multiplyScalar),\n/* harmony export */ \"multiplyScalarAndAdd\": () => (/* binding */ multiplyScalarAndAdd),\n/* harmony export */ \"exactEquals\": () => (/* binding */ exactEquals),\n/* harmony export */ \"equals\": () => (/* binding */ equals),\n/* harmony export */ \"mul\": () => (/* binding */ mul),\n/* harmony export */ \"sub\": () => (/* binding */ sub)\n/* harmony export */ });\n/* harmony import */ var _common_js__WEBPACK_IMPORTED_MODULE_0__ = __webpack_require__(/*! ./common.js */ \"./node_modules/gl-matrix/esm/common.js\");\n\n/**\r\n * 3x3 Matrix\r\n * @module mat3\r\n */\n\n/**\r\n * Creates a new identity mat3\r\n *\r\n * @returns {mat3} a new 3x3 matrix\r\n */\n\nfunction create() {\n var out = new _common_js__WEBPACK_IMPORTED_MODULE_0__.ARRAY_TYPE(9);\n\n if (_common_js__WEBPACK_IMPORTED_MODULE_0__.ARRAY_TYPE != Float32Array) {\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n }\n\n out[0] = 1;\n out[4] = 1;\n out[8] = 1;\n return out;\n}\n/**\r\n * Copies the upper-left 3x3 values into the given mat3.\r\n *\r\n * @param {mat3} out the receiving 3x3 matrix\r\n * @param {ReadonlyMat4} a the source 4x4 matrix\r\n * @returns {mat3} out\r\n */\n\nfunction fromMat4(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[4];\n out[4] = a[5];\n out[5] = a[6];\n out[6] = a[8];\n out[7] = a[9];\n out[8] = a[10];\n return out;\n}\n/**\r\n * Creates a new mat3 initialized with values from an existing matrix\r\n *\r\n * @param {ReadonlyMat3} a matrix to clone\r\n * @returns {mat3} a new 3x3 matrix\r\n */\n\nfunction clone(a) {\n var out = new _common_js__WEBPACK_IMPORTED_MODULE_0__.ARRAY_TYPE(9);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\r\n * Copy the values from one mat3 to another\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {mat3} out\r\n */\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\r\n * Create a new mat3 with the given values\r\n *\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\r\n * @returns {mat3} A new mat3\r\n */\n\nfunction fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n var out = new _common_js__WEBPACK_IMPORTED_MODULE_0__.ARRAY_TYPE(9);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n/**\r\n * Set the components of a mat3 to the given values\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\r\n * @returns {mat3} out\r\n */\n\nfunction set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n/**\r\n * Set a mat3 to the identity matrix\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @returns {mat3} out\r\n */\n\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\r\n * Transpose the values of a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {mat3} out\r\n */\n\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a12 = a[5];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a01;\n out[5] = a[7];\n out[6] = a02;\n out[7] = a12;\n } else {\n out[0] = a[0];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a[1];\n out[4] = a[4];\n out[5] = a[7];\n out[6] = a[2];\n out[7] = a[5];\n out[8] = a[8];\n }\n\n return out;\n}\n/**\r\n * Inverts a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {mat3} out\r\n */\n\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n var b01 = a22 * a11 - a12 * a21;\n var b11 = -a22 * a10 + a12 * a20;\n var b21 = a21 * a10 - a11 * a20; // Calculate the determinant\n\n var det = a00 * b01 + a01 * b11 + a02 * b21;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = b01 * det;\n out[1] = (-a22 * a01 + a02 * a21) * det;\n out[2] = (a12 * a01 - a02 * a11) * det;\n out[3] = b11 * det;\n out[4] = (a22 * a00 - a02 * a20) * det;\n out[5] = (-a12 * a00 + a02 * a10) * det;\n out[6] = b21 * det;\n out[7] = (-a21 * a00 + a01 * a20) * det;\n out[8] = (a11 * a00 - a01 * a10) * det;\n return out;\n}\n/**\r\n * Calculates the adjugate of a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {mat3} out\r\n */\n\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n out[0] = a11 * a22 - a12 * a21;\n out[1] = a02 * a21 - a01 * a22;\n out[2] = a01 * a12 - a02 * a11;\n out[3] = a12 * a20 - a10 * a22;\n out[4] = a00 * a22 - a02 * a20;\n out[5] = a02 * a10 - a00 * a12;\n out[6] = a10 * a21 - a11 * a20;\n out[7] = a01 * a20 - a00 * a21;\n out[8] = a00 * a11 - a01 * a10;\n return out;\n}\n/**\r\n * Calculates the determinant of a mat3\r\n *\r\n * @param {ReadonlyMat3} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\n\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);\n}\n/**\r\n * Multiplies two mat3's\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the first operand\r\n * @param {ReadonlyMat3} b the second operand\r\n * @returns {mat3} out\r\n */\n\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n var b00 = b[0],\n b01 = b[1],\n b02 = b[2];\n var b10 = b[3],\n b11 = b[4],\n b12 = b[5];\n var b20 = b[6],\n b21 = b[7],\n b22 = b[8];\n out[0] = b00 * a00 + b01 * a10 + b02 * a20;\n out[1] = b00 * a01 + b01 * a11 + b02 * a21;\n out[2] = b00 * a02 + b01 * a12 + b02 * a22;\n out[3] = b10 * a00 + b11 * a10 + b12 * a20;\n out[4] = b10 * a01 + b11 * a11 + b12 * a21;\n out[5] = b10 * a02 + b11 * a12 + b12 * a22;\n out[6] = b20 * a00 + b21 * a10 + b22 * a20;\n out[7] = b20 * a01 + b21 * a11 + b22 * a21;\n out[8] = b20 * a02 + b21 * a12 + b22 * a22;\n return out;\n}\n/**\r\n * Translate a mat3 by the given vector\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the matrix to translate\r\n * @param {ReadonlyVec2} v vector to translate by\r\n * @returns {mat3} out\r\n */\n\nfunction translate(out, a, v) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n x = v[0],\n y = v[1];\n out[0] = a00;\n out[1] = a01;\n out[2] = a02;\n out[3] = a10;\n out[4] = a11;\n out[5] = a12;\n out[6] = x * a00 + y * a10 + a20;\n out[7] = x * a01 + y * a11 + a21;\n out[8] = x * a02 + y * a12 + a22;\n return out;\n}\n/**\r\n * Rotates a mat3 by the given angle\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat3} out\r\n */\n\nfunction rotate(out, a, rad) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c * a00 + s * a10;\n out[1] = c * a01 + s * a11;\n out[2] = c * a02 + s * a12;\n out[3] = c * a10 - s * a00;\n out[4] = c * a11 - s * a01;\n out[5] = c * a12 - s * a02;\n out[6] = a20;\n out[7] = a21;\n out[8] = a22;\n return out;\n}\n/**\r\n * Scales the mat3 by the dimensions in the given vec2\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the matrix to rotate\r\n * @param {ReadonlyVec2} v the vec2 to scale the matrix by\r\n * @returns {mat3} out\r\n **/\n\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1];\n out[0] = x * a[0];\n out[1] = x * a[1];\n out[2] = x * a[2];\n out[3] = y * a[3];\n out[4] = y * a[4];\n out[5] = y * a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\r\n * Creates a matrix from a vector translation\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.translate(dest, dest, vec);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {ReadonlyVec2} v Translation vector\r\n * @returns {mat3} out\r\n */\n\nfunction fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = v[0];\n out[7] = v[1];\n out[8] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from a given angle\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.rotate(dest, dest, rad);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat3} out\r\n */\n\nfunction fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n out[3] = -s;\n out[4] = c;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\r\n * Creates a matrix from a vector scaling\r\n * This is equivalent to (but much faster than):\r\n *\r\n * mat3.identity(dest);\r\n * mat3.scale(dest, dest, vec);\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {ReadonlyVec2} v Scaling vector\r\n * @returns {mat3} out\r\n */\n\nfunction fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = v[1];\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\r\n * Copies the values from a mat2d into a mat3\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat2d} a the matrix to copy\r\n * @returns {mat3} out\r\n **/\n\nfunction fromMat2d(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = 0;\n out[3] = a[2];\n out[4] = a[3];\n out[5] = 0;\n out[6] = a[4];\n out[7] = a[5];\n out[8] = 1;\n return out;\n}\n/**\r\n * Calculates a 3x3 matrix from the given quaternion\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {ReadonlyQuat} q Quaternion to create matrix from\r\n *\r\n * @returns {mat3} out\r\n */\n\nfunction fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n out[0] = 1 - yy - zz;\n out[3] = yx - wz;\n out[6] = zx + wy;\n out[1] = yx + wz;\n out[4] = 1 - xx - zz;\n out[7] = zy - wx;\n out[2] = zx - wy;\n out[5] = zy + wx;\n out[8] = 1 - xx - yy;\n return out;\n}\n/**\r\n * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix\r\n *\r\n * @param {mat3} out mat3 receiving operation result\r\n * @param {ReadonlyMat4} a Mat4 to derive the normal matrix from\r\n *\r\n * @returns {mat3} out\r\n */\n\nfunction normalFromMat4(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32; // Calculate the determinant\n\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n return out;\n}\n/**\r\n * Generates a 2D projection matrix with the given bounds\r\n *\r\n * @param {mat3} out mat3 frustum matrix will be written into\r\n * @param {number} width Width of your gl context\r\n * @param {number} height Height of gl context\r\n * @returns {mat3} out\r\n */\n\nfunction projection(out, width, height) {\n out[0] = 2 / width;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = -2 / height;\n out[5] = 0;\n out[6] = -1;\n out[7] = 1;\n out[8] = 1;\n return out;\n}\n/**\r\n * Returns a string representation of a mat3\r\n *\r\n * @param {ReadonlyMat3} a matrix to represent as a string\r\n * @returns {String} string representation of the matrix\r\n */\n\nfunction str(a) {\n return \"mat3(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \", \" + a[4] + \", \" + a[5] + \", \" + a[6] + \", \" + a[7] + \", \" + a[8] + \")\";\n}\n/**\r\n * Returns Frobenius norm of a mat3\r\n *\r\n * @param {ReadonlyMat3} a the matrix to calculate Frobenius norm of\r\n * @returns {Number} Frobenius norm\r\n */\n\nfunction frob(a) {\n return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]);\n}\n/**\r\n * Adds two mat3's\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the first operand\r\n * @param {ReadonlyMat3} b the second operand\r\n * @returns {mat3} out\r\n */\n\nfunction add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n out[8] = a[8] + b[8];\n return out;\n}\n/**\r\n * Subtracts matrix b from matrix a\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the first operand\r\n * @param {ReadonlyMat3} b the second operand\r\n * @returns {mat3} out\r\n */\n\nfunction subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n out[6] = a[6] - b[6];\n out[7] = a[7] - b[7];\n out[8] = a[8] - b[8];\n return out;\n}\n/**\r\n * Multiply each element of the matrix by a scalar.\r\n *\r\n * @param {mat3} out the receiving matrix\r\n * @param {ReadonlyMat3} a the matrix to scale\r\n * @param {Number} b amount to scale the matrix's elements by\r\n * @returns {mat3} out\r\n */\n\nfunction multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n out[8] = a[8] * b;\n return out;\n}\n/**\r\n * Adds two mat3's after multiplying each element of the second operand by a scalar value.\r\n *\r\n * @param {mat3} out the receiving vector\r\n * @param {ReadonlyMat3} a the first operand\r\n * @param {ReadonlyMat3} b the second operand\r\n * @param {Number} scale the amount to scale b's elements by before adding\r\n * @returns {mat3} out\r\n */\n\nfunction multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n out[6] = a[6] + b[6] * scale;\n out[7] = a[7] + b[7] * scale;\n out[8] = a[8] + b[8] * scale;\n return out;\n}\n/**\r\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\r\n *\r\n * @param {ReadonlyMat3} a The first matrix.\r\n * @param {ReadonlyMat3} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\nfunction exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];\n}\n/**\r\n * Returns whether or not the matrices have approximately the same elements in the same position.\r\n *\r\n * @param {ReadonlyMat3} a The first matrix.\r\n * @param {ReadonlyMat3} b The second matrix.\r\n * @returns {Boolean} True if the matrices are equal, false otherwise.\r\n */\n\nfunction equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7],\n a8 = a[8];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7],\n b8 = b[8];\n return Math.abs(a0 - b0) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));\n}\n/**\r\n * Alias for {@link mat3.multiply}\r\n * @function\r\n */\n\nvar mul = multiply;\n/**\r\n * Alias for {@link mat3.subtract}\r\n * @function\r\n */\n\nvar sub = subtract;\n\n//# sourceURL=webpack://war3-model-docs/./node_modules/gl-matrix/esm/mat3.js?");
/***/ }),
/***/ "./node_modules/gl-matrix/esm/mat4.js":
/*!********************************************!*\
!*** ./node_modules/gl-matrix/esm/mat4.js ***!
\********************************************/
/***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
"use strict";
eval("__webpack_require__.r(__webpack_exports__);\n/* harmony export */ __webpack_require__.d(__webpack_exports__, {\n/* harmony export */ \"create\": () => (/* binding */ create),\n/* harmony export */ \"clone\": () => (/* binding */ clone),\n/* harmony export */ \"copy\": () => (/* binding */ copy),\n/* harmony export */ \"fromValues\": () => (/* binding */ fromValues),\n/* harmony export */ \"set\": () => (/* binding */ set),\n/* harmony export */ \"identity\": () => (/* binding */ identity),\n/* harmony export */ \"transpose\": () => (/* binding */ transpose),\n/* harmony export */ \"invert\": () => (/* binding */ invert),\n/* harmony export */ \"adjoint\": () => (/* binding */ adjoint),\n/* harmony export */ \"determinant\": () => (/* binding */ determinant),\n/* harmony export */ \"multiply\": () => (/* binding */ multiply),\n/* harmony export */ \"translate\": () => (/* binding */ translate),\n/* harmony export */ \"scale\": () => (/* binding */ scale),\n/* harmony export */ \"rotate\": () => (/* binding */ rotate),\n/* harmony export */ \"rotateX\": () => (/* binding */ rotateX),\n/* harmony export */ \"rotateY\": () => (/* binding */ rotateY),\n/* harmony export */ \"rotateZ\": () => (/* binding */ rotateZ),\n/* harmony export */ \"fromTranslation\": () => (/* binding */ fromTranslation),\n/* harmony export */ \"fromScaling\": () => (/* binding */ fromScaling),\n/* harmony export */ \"fromRotation\": () => (/* binding */ fromRotation),\n/* harmony export */ \"fromXRotation\": () => (/* binding */ fromXRotation),\n/* harmony export */ \"fromYRotation\": () => (/* binding */ fromYRotation),\n/* harmony export */ \"fromZRotation\": () => (/* binding */ fromZRotation),\n/* harmony export */ \"fromRotationTranslation\": () => (/* binding */ fromRotationTranslation),\n/* harmony export */ \"fromQuat2\": () => (/* binding */ fromQuat2),\n/* harmony export */ \"getTranslation\": () => (/* binding */ getTranslation),\n/* harmony export */ \"getScaling\": () => (/* binding */ getScaling),\n/* harmony export */ \"getRotation\": () => (/* binding */ getRotation),\n/* harmony export */ \"fromRotationTranslationScale\": () => (/* binding */ fromRotationTranslationScale),\n/* harmony export */ \"fromRotationTranslationScaleOrigin\": () => (/* binding */ fromRotationTranslationScaleOrigin),\n/* harmony export */ \"fromQuat\": () => (/* binding */ fromQuat),\n/* harmony export */ \"frustum\": () => (/* binding */ frustum),\n/* harmony export */ \"perspective\": () => (/* binding */ perspective),\n/* harmony export */ \"perspectiveFromFieldOfView\": () => (/* binding */ perspectiveFromFieldOfView),\n/* harmony export */ \"ortho\": () => (/* binding */ ortho),\n/* harmony export */ \"lookAt\": () => (/* binding */ lookAt),\n/* harmony export */ \"targetTo\": () => (/* binding */ targetTo),\n/* harmony export */ \"str\": () => (/* binding */ str),\n/* harmony export */ \"frob\": () => (/* binding */ frob),\n/* harmony export */ \"add\": () => (/* binding */ add),\n/* harmony export */ \"subtract\": () => (/* binding */ subtract),\n/* harmony export */ \"multiplyScalar\": () => (/* binding */ multiplyScalar),\n/* harmony export */ \"multiplyScalarAndAdd\": () => (/* binding */ multiplyScalarAndAdd),\n/* harmony export */ \"exactEquals\": () => (/* binding */ exactEquals),\n/* harmony export */ \"equals\": () => (/* binding */ equals),\n/* harmony export */ \"mul\": () => (/* binding */ mul),\n/* harmony export */ \"sub\": () => (/* binding */ sub)\n/* harmony export */ });\n/* harmony import */ var _common_js__WEBPACK_IMPORTED_MODULE_0__ = __webpack_require__(/*! ./common.js */ \"./node_modules/gl-matrix/esm/common.js\");\n\n/**\r\n * 4x4 Matrix<br>Format: column-major, when typed out it looks like row-major<br>The matrices are being post multiplied.\r\n * @module mat4\r\n */\n\n/**\r\n * Creates a new identity mat4\r\n *\r\n * @returns {mat4} a new 4x4 matrix\r\n */\n\nfunction create() {\n var out = new _common_js__WEBPACK_IMPORTED_MODULE_0__.ARRAY_TYPE(16);\n\n if (_common_js__WEBPACK_IMPORTED_MODULE_0__.ARRAY_TYPE != Float32Array) {\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n }\n\n out[0] = 1;\n out[5] = 1;\n out[10] = 1;\n out[15] = 1;\n return out;\n}\n/**\r\n * Creates a new mat4 initialized with values from an existing matrix\r\n *\r\n * @param {ReadonlyMat4} a matrix to clone\r\n * @returns {mat4} a new 4x4 matrix\r\n */\n\nfunction clone(a) {\n var out = new _common_js__WEBPACK_IMPORTED_MODULE_0__.ARRAY_TYPE(16);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n/**\r\n * Copy the values from one mat4 to another\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {mat4} out\r\n */\n\nfunction copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n out[9] = a[9];\n out[10] = a[10];\n out[11] = a[11];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n/**\r\n * Create a new mat4 with the given values\r\n *\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m03 Component in column 0, row 3 position (index 3)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 4)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 5)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 6)\r\n * @param {Number} m13 Component in column 1, row 3 position (index 7)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 8)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 9)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 10)\r\n * @param {Number} m23 Component in column 2, row 3 position (index 11)\r\n * @param {Number} m30 Component in column 3, row 0 position (index 12)\r\n * @param {Number} m31 Component in column 3, row 1 position (index 13)\r\n * @param {Number} m32 Component in column 3, row 2 position (index 14)\r\n * @param {Number} m33 Component in column 3, row 3 position (index 15)\r\n * @returns {mat4} A new mat4\r\n */\n\nfunction fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {\n var out = new _common_js__WEBPACK_IMPORTED_MODULE_0__.ARRAY_TYPE(16);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m03;\n out[4] = m10;\n out[5] = m11;\n out[6] = m12;\n out[7] = m13;\n out[8] = m20;\n out[9] = m21;\n out[10] = m22;\n out[11] = m23;\n out[12] = m30;\n out[13] = m31;\n out[14] = m32;\n out[15] = m33;\n return out;\n}\n/**\r\n * Set the components of a mat4 to the given values\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\r\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\r\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\r\n * @param {Number} m03 Component in column 0, row 3 position (index 3)\r\n * @param {Number} m10 Component in column 1, row 0 position (index 4)\r\n * @param {Number} m11 Component in column 1, row 1 position (index 5)\r\n * @param {Number} m12 Component in column 1, row 2 position (index 6)\r\n * @param {Number} m13 Component in column 1, row 3 position (index 7)\r\n * @param {Number} m20 Component in column 2, row 0 position (index 8)\r\n * @param {Number} m21 Component in column 2, row 1 position (index 9)\r\n * @param {Number} m22 Component in column 2, row 2 position (index 10)\r\n * @param {Number} m23 Component in column 2, row 3 position (index 11)\r\n * @param {Number} m30 Component in column 3, row 0 position (index 12)\r\n * @param {Number} m31 Component in column 3, row 1 position (index 13)\r\n * @param {Number} m32 Component in column 3, row 2 position (index 14)\r\n * @param {Number} m33 Component in column 3, row 3 position (index 15)\r\n * @returns {mat4} out\r\n */\n\nfunction set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m03;\n out[4] = m10;\n out[5] = m11;\n out[6] = m12;\n out[7] = m13;\n out[8] = m20;\n out[9] = m21;\n out[10] = m22;\n out[11] = m23;\n out[12] = m30;\n out[13] = m31;\n out[14] = m32;\n out[15] = m33;\n return out;\n}\n/**\r\n * Set a mat4 to the identity matrix\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @returns {mat4} out\r\n */\n\nfunction identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 0;\n out[5] = 1;\n out[6] = 0;\n out[7] = 0;\n out[8] = 0;\n out[9] = 0;\n out[10] = 1;\n out[11] = 0;\n out[12] = 0;\n out[13] = 0;\n out[14] = 0;\n out[15] = 1;\n return out;\n}\n/**\r\n * Transpose the values of a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {mat4} out\r\n */\n\nfunction transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a12 = a[6],\n a13 = a[7];\n var a23 = a[11];\n out[1] = a[4];\n out[2] = a[8];\n out[3] = a[12];\n out[4] = a01;\n out[6] = a[9];\n out[7] = a[13];\n out[8] = a02;\n out[9] = a12;\n out[11] = a[14];\n out[12] = a03;\n out[13] = a13;\n out[14] = a23;\n } else {\n out[0] = a[0];\n out[1] = a[4];\n out[2] = a[8];\n out[3] = a[12];\n out[4] = a[1];\n out[5] = a[5];\n out[6] = a[9];\n out[7] = a[13];\n out[8] = a[2];\n out[9] = a[6];\n out[10] = a[10];\n out[11] = a[14];\n out[12] = a[3];\n out[13] = a[7];\n out[14] = a[11];\n out[15] = a[15];\n }\n\n return out;\n}\n/**\r\n * Inverts a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {mat4} out\r\n */\n\nfunction invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32; // Calculate the determinant\n\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;\n out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;\n out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;\n out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;\n out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;\n out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;\n out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;\n return out;\n}\n/**\r\n * Calculates the adjugate of a mat4\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {mat4} out\r\n */\n\nfunction adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22);\n out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));\n out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12);\n out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));\n out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));\n out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22);\n out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));\n out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12);\n out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21);\n out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));\n out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11);\n out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));\n out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));\n out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21);\n out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));\n out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11);\n return out;\n}\n/**\r\n * Calculates the determinant of a mat4\r\n *\r\n * @param {ReadonlyMat4} a the source matrix\r\n * @returns {Number} determinant of a\r\n */\n\nfunction determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32; // Calculate the determinant\n\n return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n}\n/**\r\n * Multiplies two mat4s\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the first operand\r\n * @param {ReadonlyMat4} b the second operand\r\n * @returns {mat4} out\r\n */\n\nfunction multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15]; // Cache only the current line of the second matrix\n\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3];\n out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n b0 = b[4];\n b1 = b[5];\n b2 = b[6];\n b3 = b[7];\n out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n b0 = b[8];\n b1 = b[9];\n b2 = b[10];\n b3 = b[11];\n out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n b0 = b[12];\n b1 = b[13];\n b2 = b[14];\n b3 = b[15];\n out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;\n out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;\n out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;\n out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;\n return out;\n}\n/**\r\n * Translate a mat4 by the given vector\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to translate\r\n * @param {ReadonlyVec3} v vector to translate by\r\n * @returns {mat4} out\r\n */\n\nfunction translate(out, a, v) {\n var x = v[0],\n y = v[1],\n z = v[2];\n var a00, a01, a02, a03;\n var a10, a11, a12, a13;\n var a20, a21, a22, a23;\n\n if (a === out) {\n out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];\n out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];\n out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];\n out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];\n } else {\n a00 = a[0];\n a01 = a[1];\n a02 = a[2];\n a03 = a[3];\n a10 = a[4];\n a11 = a[5];\n a12 = a[6];\n a13 = a[7];\n a20 = a[8];\n a21 = a[9];\n a22 = a[10];\n a23 = a[11];\n out[0] = a00;\n out[1] = a01;\n out[2] = a02;\n out[3] = a03;\n out[4] = a10;\n out[5] = a11;\n out[6] = a12;\n out[7] = a13;\n out[8] = a20;\n out[9] = a21;\n out[10] = a22;\n out[11] = a23;\n out[12] = a00 * x + a10 * y + a20 * z + a[12];\n out[13] = a01 * x + a11 * y + a21 * z + a[13];\n out[14] = a02 * x + a12 * y + a22 * z + a[14];\n out[15] = a03 * x + a13 * y + a23 * z + a[15];\n }\n\n return out;\n}\n/**\r\n * Scales the mat4 by the dimensions in the given vec3 not using vectorization\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to scale\r\n * @param {ReadonlyVec3} v the vec3 to scale the matrix by\r\n * @returns {mat4} out\r\n **/\n\nfunction scale(out, a, v) {\n var x = v[0],\n y = v[1],\n z = v[2];\n out[0] = a[0] * x;\n out[1] = a[1] * x;\n out[2] = a[2] * x;\n out[3] = a[3] * x;\n out[4] = a[4] * y;\n out[5] = a[5] * y;\n out[6] = a[6] * y;\n out[7] = a[7] * y;\n out[8] = a[8] * z;\n out[9] = a[9] * z;\n out[10] = a[10] * z;\n out[11] = a[11] * z;\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n return out;\n}\n/**\r\n * Rotates a mat4 by the given angle around the given axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @param {ReadonlyVec3} axis the axis to rotate around\r\n * @returns {mat4} out\r\n */\n\nfunction rotate(out, a, rad, axis) {\n var x = axis[0],\n y = axis[1],\n z = axis[2];\n var len = Math.hypot(x, y, z);\n var s, c, t;\n var a00, a01, a02, a03;\n var a10, a11, a12, a13;\n var a20, a21, a22, a23;\n var b00, b01, b02;\n var b10, b11, b12;\n var b20, b21, b22;\n\n if (len < _common_js__WEBPACK_IMPORTED_MODULE_0__.EPSILON) {\n return null;\n }\n\n len = 1 / len;\n x *= len;\n y *= len;\n z *= len;\n s = Math.sin(rad);\n c = Math.cos(rad);\n t = 1 - c;\n a00 = a[0];\n a01 = a[1];\n a02 = a[2];\n a03 = a[3];\n a10 = a[4];\n a11 = a[5];\n a12 = a[6];\n a13 = a[7];\n a20 = a[8];\n a21 = a[9];\n a22 = a[10];\n a23 = a[11]; // Construct the elements of the rotation matrix\n\n b00 = x * x * t + c;\n b01 = y * x * t + z * s;\n b02 = z * x * t - y * s;\n b10 = x * y * t - z * s;\n b11 = y * y * t + c;\n b12 = z * y * t + x * s;\n b20 = x * z * t + y * s;\n b21 = y * z * t - x * s;\n b22 = z * z * t + c; // Perform rotation-specific matrix multiplication\n\n out[0] = a00 * b00 + a10 * b01 + a20 * b02;\n out[1] = a01 * b00 + a11 * b01 + a21 * b02;\n out[2] = a02 * b00 + a12 * b01 + a22 * b02;\n out[3] = a03 * b00 + a13 * b01 + a23 * b02;\n out[4] = a00 * b10 + a10 * b11 + a20 * b12;\n out[5] = a01 * b10 + a11 * b11 + a21 * b12;\n out[6] = a02 * b10 + a12 * b11 + a22 * b12;\n out[7] = a03 * b10 + a13 * b11 + a23 * b12;\n out[8] = a00 * b20 + a10 * b21 + a20 * b22;\n out[9] = a01 * b20 + a11 * b21 + a21 * b22;\n out[10] = a02 * b20 + a12 * b21 + a22 * b22;\n out[11] = a03 * b20 + a13 * b21 + a23 * b22;\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged last row\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n }\n\n return out;\n}\n/**\r\n * Rotates a matrix by the given angle around the X axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\n\nfunction rotateX(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a10 = a[4];\n var a11 = a[5];\n var a12 = a[6];\n var a13 = a[7];\n var a20 = a[8];\n var a21 = a[9];\n var a22 = a[10];\n var a23 = a[11];\n\n if (a !== out) {\n // If the source and destination differ, copy the unchanged rows\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[12] = a[12];\n out[13] = a[13];\n out[14] = a[14];\n out[15] = a[15];\n } // Perform axis-specific matrix multiplication\n\n\n out[4] = a10 * c + a20 * s;\n out[5] = a11 * c + a21 * s;\n out[6] = a12 * c + a22 * s;\n out[7] = a13 * c + a23 * s;\n out[8] = a20 * c - a10 * s;\n out[9] = a21 * c - a11 * s;\n out[10] = a22 * c - a12 * s;\n out[11] = a23 * c - a13 * s;\n return out;\n}\n/**\r\n * Rotates a matrix by the given angle around the Y axis\r\n *\r\n * @param {mat4} out the receiving matrix\r\n * @param {ReadonlyMat4} a the matrix to rotate\r\n * @param {Number} rad the angle to rotate the matrix by\r\n * @returns {mat4} out\r\n */\n\nfunction rotateY(out, a, rad) {\n var s = Math.sin(rad);\n var c = Math.cos(rad);\n var a00 = a[0];\n var a01 = a[1];\n var a02 = a[2];\n var a03 = a[3];\n var a20 = a[8];\n var a21 = a[9];\n var a22 = a[10];\n var a23 = a[11];\n\n if (a !== out) {\n //