UNPKG

w-statistic

Version:
103 lines (86 loc) 2.83 kB
import size from 'lodash-es/size.js' import map from 'lodash-es/map.js' import isarr from 'wsemi/src/isarr.mjs' import arrAverage from './arrAverage.mjs' import arrStd from './arrStd.mjs' import histGen from './histGen.mjs' // import jt from './jStat.mjs' /** * 基於常態分布計算陣列數據分組直方圖、統計與趨勢線數據 * * Unit Test: {@link https://github.com/yuda-lyu/w-statistic/blob/master/test/arrNormHist.test.js Github} * @memberOf w-statistic * @param {Array} arr 輸入陣列,只提取有效數字(或為字串的數字)進行計算 * @param {Object} [opt={}] 輸入設定物件,預設{} * @param {Number} [opt.dx=null] 輸入直方圖分組(x軸)寬度數字,預設null * @param {Integer} [opt.n=30] 輸入直方圖分組(x軸)數量整數,預設30 * @param {Integer} [opt.nCurve=100] 輸入擬合用陣列數據長度整數,預設100 * @param {Number} [opt.min=null] 輸入直方圖分組(x軸)最小值數字,若不給則使用數據最小值,預設null * @param {Number} [opt.max=null] 輸入直方圖分組(x軸)最大值數字,若不給則使用數據最大值,預設null * @returns {Number} 回傳反函數值 * @example * * async function test() { * } * test() * .catch((err) => { * console.log(err) * }) * */ async function arrNormHist(arr, opt = {}) { //check arr if (!isarr(arr)) { return Promise.reject('arr is not an array') } if (size(arr) === 0) { return Promise.reject('arr is not an effective array') } //histGen let avg = null let std = null let r = await histGen(arr, (params) => { // console.log('params', params) //avg, 得使用callback內arr為有效數據 avg = arrAverage(params.arr) //std, 得使用callback內arr為有效數據 std = arrStd(params.arr) //ry let ry = (std * Math.sqrt(2 * Math.PI)) //curveY let curveY = map(params.curveX, (x) => { let y = 0 if (ry !== 0) { y = 1 / ry * Math.exp(-((x - avg) ** 2) / (2 * std ** 2)) } return y }) return curveY }, opt) //merge pdfs let bins = map(r.bins, (v, k) => { v.pdf = r.pdfs[k] return v }) //merge curveX, curveY let curves = map(r.curveX, (v, k) => { return { x: v, pdf: r.curveY[k], } }) //res let res = { avg, std, arr: r.arr, min: r.min, max: r.max, barWidth: r.barWidth, ratioForCountToPdf: r.ratioForCountToPdf, bins, curves, } return res } export default arrNormHist