UNPKG

w-statistic

Version:
205 lines (157 loc) 7.34 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>arrNormInv.mjs - Documentation</title> <script src="scripts/prettify/prettify.js"></script> <script src="scripts/prettify/lang-css.js"></script> <!--[if lt IE 9]> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <![endif]--> <link type="text/css" rel="stylesheet" href="styles/prettify.css"> <link type="text/css" rel="stylesheet" href="styles/jsdoc.css"> <script src="scripts/nav.js" defer></script> <meta name="viewport" content="width=device-width, initial-scale=1.0"> </head> <body> <input type="checkbox" id="nav-trigger" class="nav-trigger" /> <label for="nav-trigger" class="navicon-button x"> <div class="navicon"></div> </label> <label for="nav-trigger" class="overlay"></label> <nav > <h2><a href="index.html">Home</a></h2><h3>Classes</h3><ul><li><a href="w-statistic.html">w-statistic</a><ul class='methods'><li data-type='method'><a href="w-statistic.html#.arrAverage">arrAverage</a></li><li data-type='method'><a href="w-statistic.html#.arrAverageWithLogNormCI">arrAverageWithLogNormCI</a></li><li data-type='method'><a href="w-statistic.html#.arrAverageWithNormCI">arrAverageWithNormCI</a></li><li data-type='method'><a href="w-statistic.html#.arrCount">arrCount</a></li><li data-type='method'><a href="w-statistic.html#.arrGammaFit">arrGammaFit</a></li><li data-type='method'><a href="w-statistic.html#.arrGammaHist">arrGammaHist</a></li><li data-type='method'><a href="w-statistic.html#.arrGammaInv">arrGammaInv</a></li><li data-type='method'><a href="w-statistic.html#.arrGeometricAverage">arrGeometricAverage</a></li><li data-type='method'><a href="w-statistic.html#.arrGeometricStd">arrGeometricStd</a></li><li data-type='method'><a href="w-statistic.html#.arrLogNormHist">arrLogNormHist</a></li><li data-type='method'><a href="w-statistic.html#.arrLogNormInv">arrLogNormInv</a></li><li data-type='method'><a href="w-statistic.html#.arrMovingAverage">arrMovingAverage</a></li><li data-type='method'><a href="w-statistic.html#.arrNormHist">arrNormHist</a></li><li data-type='method'><a href="w-statistic.html#.arrNormInv">arrNormInv</a></li><li data-type='method'><a href="w-statistic.html#.arrQuartile">arrQuartile</a></li><li data-type='method'><a href="w-statistic.html#.arrStd">arrStd</a></li><li data-type='method'><a href="w-statistic.html#.bin">bin</a></li><li data-type='method'><a href="w-statistic.html#.histGen">histGen</a></li><li data-type='method'><a href="w-statistic.html#.regLine">regLine</a></li><li data-type='method'><a href="w-statistic.html#.regMpLine">regMpLine</a></li><li data-type='method'><a href="w-statistic.html#.regPoly">regPoly</a></li><li data-type='method'><a href="w-statistic.html#.regPower">regPower</a></li><li data-type='method'><a href="w-statistic.html#.sampleRandom">sampleRandom</a></li><li data-type='method'><a href="w-statistic.html#.studentTInv">studentTInv</a></li></ul></li></ul> </nav> <div id="main"> <h1 class="page-title">arrNormInv.mjs</h1> <section> <article> <pre class="prettyprint source linenums"><code>import size from 'lodash-es/size.js' import isNumber from 'lodash-es/isNumber.js' import isarr from 'wsemi/src/isarr.mjs' import isnum from 'wsemi/src/isnum.mjs' import cdbl from 'wsemi/src/cdbl.mjs' import arrFilterByNum from 'wsemi/src/arrFilterByNum.mjs' import arrAverage from './arrAverage.mjs' import arrStd from './arrStd.mjs' import jt from './jStat.mjs' /** * 基於常態累加分布計算指定位置之反函數值 * * Unit Test: {@link https://github.com/yuda-lyu/w-statistic/blob/master/test/arrNormInv.test.js Github} * @memberOf w-statistic * @param {Array} arr 輸入陣列,只提取有效數字(或為字串的數字)進行計算 * @param {Number} ratio 輸入指定位置浮點數,需介於0至1之間 * @returns {Number} 回傳反函數值 * @example * * async function test() { * * let arr * let r * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * r = await arrNormInv(arr, 0.25) * console.log(r.inv) * // => 22.47539788913989 * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * r = await arrNormInv(arr, 0.5) * console.log(r.inv) * // => 33.18181818181818 * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * r = await arrNormInv(arr, 0.75) * console.log(r.inv) * // => 43.88823847449647 * * arr = ['abc', '-2.5', -2.5, '-1', -1, '-0.1', -0.1, '0', 0, '0.1', 0.1, '1', 1, '2.5', 2.5, 22.5, 'xyz'] * r = await arrNormInv(arr, 0.5) * console.log(r.inv) * // => 1.4999999999999996 * * arr = ['abc', '0', 0, '0.1', 0.1, '1', 1, '2.5', 2.5, 22.5, 'xyz'] * r = await arrNormInv(arr, 0.5) * console.log(r.inv) * // => 3.2999999999999994 * * } * test() * .catch((err) => { * console.log(err) * }) * */ async function arrNormInv(arr, ratio) { //check arr if (!isarr(arr)) { return Promise.reject('arr is not an array') } if (size(arr) === 0) { return Promise.reject('arr is not an effective array') } //check ratio if (!isnum(ratio)) { return Promise.reject(`ratio[${ratio}] is not a number`) } ratio = cdbl(ratio) if (ratio &lt; 0) { return Promise.reject(`ratio[${ratio}] &lt; 0`) } if (ratio > 1) { return Promise.reject(`ratio[${ratio}] > 1`) } //rs let rs = arrFilterByNum(arr) //n let n = size(rs) //check if (n === 0) { return Promise.reject(`no effective data`) } //avg, std let avg = arrAverage(rs) let std = arrStd(rs) //std為樣本標準差(用n-1) // console.log('avg', avg, 'std', std) //check avg if (!isNumber(avg)) { return Promise.reject(`avg[${avg}] is not a number`) } //check std if (!isNumber(std)) { return Promise.reject(`std[${std}] is not a number`) } //check std, 計算wd.Normal時標準差不能小於等於0 if (std &lt;= 0) { return Promise.reject(`std[${std}] &lt;= 0`) } // //Normal // let normal3_0025 = await wd.Normal(2.947834716, 0.025418535) //mean=2.947834716,arrStd deviation=0.025418535 // let r = normal3_0025.inv(0.25) // console.log(`normal3_0025.inv(0.25)`, r) // // => 2.9306901746775 //r, 等同於Excel的r=NORM.INV(p,mean,arrStd) // let nm = await wd.Normal(avg, std) // let r = nm.inv(ratio) let r = jt.normal.inv(ratio, avg, std) return { inv: r, avg, std, arr: rs, } } export default arrNormInv </code></pre> </article> </section> </div> <br class="clear"> <footer> Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 4.0.2</a> on Tue Jul 29 2025 14:21:18 GMT+0800 (台北標準時間) using the <a href="https://github.com/clenemt/docdash">docdash</a> theme. </footer> <script>prettyPrint();</script> <script src="scripts/polyfill.js"></script> <script src="scripts/linenumber.js"></script> </body> </html>