UNPKG

w-statistic

Version:
230 lines (177 loc) 8.94 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>arrAverageWithNormCI.mjs - Documentation</title> <script src="scripts/prettify/prettify.js"></script> <script src="scripts/prettify/lang-css.js"></script> <!--[if lt IE 9]> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <![endif]--> <link type="text/css" rel="stylesheet" href="styles/prettify.css"> <link type="text/css" rel="stylesheet" href="styles/jsdoc.css"> <script src="scripts/nav.js" defer></script> <meta name="viewport" content="width=device-width, initial-scale=1.0"> </head> <body> <input type="checkbox" id="nav-trigger" class="nav-trigger" /> <label for="nav-trigger" class="navicon-button x"> <div class="navicon"></div> </label> <label for="nav-trigger" class="overlay"></label> <nav > <h2><a href="index.html">Home</a></h2><h3>Classes</h3><ul><li><a href="w-statistic.html">w-statistic</a><ul class='methods'><li data-type='method'><a href="w-statistic.html#.arrAverage">arrAverage</a></li><li data-type='method'><a href="w-statistic.html#.arrAverageWithLogNormCI">arrAverageWithLogNormCI</a></li><li data-type='method'><a href="w-statistic.html#.arrAverageWithNormCI">arrAverageWithNormCI</a></li><li data-type='method'><a href="w-statistic.html#.arrCount">arrCount</a></li><li data-type='method'><a href="w-statistic.html#.arrGammaFit">arrGammaFit</a></li><li data-type='method'><a href="w-statistic.html#.arrGammaHist">arrGammaHist</a></li><li data-type='method'><a href="w-statistic.html#.arrGammaInv">arrGammaInv</a></li><li data-type='method'><a href="w-statistic.html#.arrGeometricAverage">arrGeometricAverage</a></li><li data-type='method'><a href="w-statistic.html#.arrGeometricStd">arrGeometricStd</a></li><li data-type='method'><a href="w-statistic.html#.arrLogNormHist">arrLogNormHist</a></li><li data-type='method'><a href="w-statistic.html#.arrLogNormInv">arrLogNormInv</a></li><li data-type='method'><a href="w-statistic.html#.arrMovingAverage">arrMovingAverage</a></li><li data-type='method'><a href="w-statistic.html#.arrNormHist">arrNormHist</a></li><li data-type='method'><a href="w-statistic.html#.arrNormInv">arrNormInv</a></li><li data-type='method'><a href="w-statistic.html#.arrQuartile">arrQuartile</a></li><li data-type='method'><a href="w-statistic.html#.arrStd">arrStd</a></li><li data-type='method'><a href="w-statistic.html#.bin">bin</a></li><li data-type='method'><a href="w-statistic.html#.histGen">histGen</a></li><li data-type='method'><a href="w-statistic.html#.regLine">regLine</a></li><li data-type='method'><a href="w-statistic.html#.regMpLine">regMpLine</a></li><li data-type='method'><a href="w-statistic.html#.regPoly">regPoly</a></li><li data-type='method'><a href="w-statistic.html#.regPower">regPower</a></li><li data-type='method'><a href="w-statistic.html#.sampleRandom">sampleRandom</a></li><li data-type='method'><a href="w-statistic.html#.studentTInv">studentTInv</a></li></ul></li></ul> </nav> <div id="main"> <h1 class="page-title">arrAverageWithNormCI.mjs</h1> <section> <article> <pre class="prettyprint source linenums"><code>import size from 'lodash-es/size.js' import isNumber from 'lodash-es/isNumber.js' import isarr from 'wsemi/src/isarr.mjs' import isnum from 'wsemi/src/isnum.mjs' import cdbl from 'wsemi/src/cdbl.mjs' import arrFilterByNum from 'wsemi/src/arrFilterByNum.mjs' import arrAverage from './arrAverage.mjs' import arrStd from './arrStd.mjs' import studentTInv from './studentTInv.mjs' /** * 基於Student-T累加分布之信賴水準(p)以及指定左右單尾條件下,計算樣本平均值。Student-T需用於常態分佈樣本。此時左尾代表樣本平均值可小於等於母數平均值,而右尾代表樣本平均值可大於等於母數平均值 * * Unit Test: {@link https://github.com/yuda-lyu/w-statistic/blob/master/test/arrAverageWithNormCI.test.js Github} * @memberOf w-statistic * @param {Array} arr 輸入陣列,只提取有效數字(或為字串的數字)進行計算 * @param {Number} p 輸入信賴水準浮點數,需介於0至1之間 * @param {String} mode 輸入檢定模式字串,可選'two-tailed'、'upper-tail'、'lower-tail',預設'two-tailed' * @returns {Number} 回傳樣本平均值 * @example * * async function test() { * * let arr * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * console.log(await arrAverageWithNormCI(arr, 0.95)) * // => [ 33.48954903620701, 32.87408732742935 ] * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * console.log(await arrAverageWithNormCI(arr, 0.95, 'upper-tail')) * // => 41.85625495776645 * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * console.log(await arrAverageWithNormCI(arr, 0.95, 'lower-tail')) * // => 24.507381405869904 * * arr = [18.7261764705882, 18.6629411764705, 19.3983050847457, 18.5099999999999, 18.9986446886446, 18.9083937823834, 19.1957837837837, 19.0423529411764, 19.2320588235294, 18.8526470588235, 18.7982198952879, 19.0423529411764, 19.075, 18.945238095238, 20.6691240875912] * console.log(await arrAverageWithNormCI(arr, 0.95, 'upper-tail')) * // => 19.297020890880212 * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * console.log(await arrAverageWithNormCI(arr, 0.25)) * // => [ 39.026745129035845, 27.336891234600518 ] * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * console.log(await arrAverageWithNormCI(arr, 0.5)) * // => [ 36.53111791211017, 29.832518451526187 ] * * arr = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36] * console.log(await arrAverageWithNormCI(arr, 0.75)) * // => [ 34.74951166569791, 31.614124697938454 ] * * arr = ['abc', '-2.5', -2.5, '-1', -1, '-0.1', -0.1, '0', 0, '0.1', 0.1, '1', 1, '2.5', 2.5, 22.5, 'xyz'] * console.log(await arrAverageWithNormCI(arr, 0.50)) * // => [ 2.5700668400787645, 0.4299331599212357 ] * * arr = ['abc', '0', 0, '0.1', 0.1, '1', 1, '2.5', 2.5, 22.5, 'xyz'] * console.log(await arrAverageWithNormCI(arr, 0.50)) * // => [ 5.011682286477105, 1.5883177135228952 ] * * } * test() * .catch((err) => { * console.log(err) * }) * */ async function arrAverageWithNormCI(arr, p, mode = 'two-tailed') { //check arr if (!isarr(arr)) { return Promise.reject('arr is not an array') } if (size(arr) === 0) { return Promise.reject('arr is not an effective array') } //check p if (!isnum(p)) { return Promise.reject(`p[${p}] is not a number`) } p = cdbl(p) if (p &lt; 0) { return Promise.reject(`p[${p}] &lt; 0`) } if (p > 1) { return Promise.reject(`p[${p}] > 1`) } //check mode if (mode !== 'two-tailed' &amp;&amp; mode !== 'upper-tail' &amp;&amp; mode !== 'lower-tail') { return Promise.reject(`mode[${mode}] is not 'two-tailed', 'upper-tail' or 'lower-tail'`) } //rs let rs = arrFilterByNum(arr) //n let n = size(rs) //check if (n === 0) { return Promise.reject(`no effective data`) } //avg, sigma let avg = arrAverage(arr) let sigma = arrStd(arr) //sigma為樣本標準差(用n-1) //check avg if (!isNumber(avg)) { return Promise.reject(`avg[${avg}] is not a number`) } //check sigma if (!isNumber(sigma)) { return Promise.reject(`sigma[${sigma}] is not a number`) } //r let r = null if (mode === 'upper-tail' || mode === 'lower-tail') { //upper-tail: 右單尾 //lower-tail: 左單尾 //tav let tav = await studentTInv(n, p) //單尾 //r if (mode === 'upper-tail') { r = avg + tav * sigma / Math.sqrt(n) } else { //左單尾 r = avg - tav * sigma / Math.sqrt(n) } } else if (mode === 'two-tailed') { //雙尾: two-tailed //tav let tav = await studentTInv(n, p / 2) //雙尾 //r let r1 = avg - tav * sigma / Math.sqrt(n) let r2 = avg + tav * sigma / Math.sqrt(n) r = [r1, r2] } return r } export default arrAverageWithNormCI </code></pre> </article> </section> </div> <br class="clear"> <footer> Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 4.0.2</a> on Tue Jul 29 2025 14:21:18 GMT+0800 (台北標準時間) using the <a href="https://github.com/clenemt/docdash">docdash</a> theme. </footer> <script>prettyPrint();</script> <script src="scripts/polyfill.js"></script> <script src="scripts/linenumber.js"></script> </body> </html>