voyageai
Version:
[](https://buildwithfern.com?utm_source=github&utm_medium=github&utm_campaign=readme&utm_source=https%3A%2F%2Fgithub.com%2Fvoyage-ai%2Ftypescript-sdk) [ • 10.7 kB
TypeScript
/**
* This file was auto-generated by Fern from our API Definition.
*/
import * as VoyageAI from "../../index";
/**
* @example
* {
* inputs: [{}],
* model: "model"
* }
*/
export interface MultimodalEmbedRequest {
/**
* A list of multimodal inputs to be vectorized.
* A single input in the list is a dictionary containing a single key "content", whose value represents a sequence of text and images.
* <ul><p></p>
* <li> The value of <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">"content"</span></code> is a list of dictionaries, each representing a single piece of text or image. The dictionaries have four possible keys:
* <ol class="nested-ordered-list">
* <li> <b>type</b>: Specifies the type of the piece of the content. Allowed values are <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">text</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>, or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code>.</li>
* <li> <b>text</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">text</span></code>. The value should be a text string.</li>
* <li> <b>image_base64</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code>. The value should be a Base64-encoded image in the <a target="_blank" href="https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data">data URL</a> format <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">data:[<mediatype>];base64,<data></span></code>. Currently supported <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">mediatypes</span></code> are: <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/png</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/jpeg</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/webp</span></code>, and <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/gif</span></code>.</li>
* <li> <b>image_url</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>. The value should be a URL linking to the image. We support PNG, JPEG, WEBP, and GIF images.</li>
* </ol>
* </li>
* <li> <b>Note</b>: Only one of the keys, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>, should be present in each dictionary for image data. Consistency is required within a request, meaning each request should use either <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code> exclusively for images, not both.<br>
* <br>
* <details> <summary> Example payload where <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code> contains an image as a URL </summary>
* <br>
* The <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code> list contains a single input, which consists of a piece of text and an image (which is provided via a URL).
* <pre><code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">
* {
* "inputs": [
* {
* "content": [
* {
* "type": "text",
* "text": "This is a banana."
* },
* {
* "type": "image_url",
* "image_url": "https://raw.githubusercontent.com/voyage-ai/voyage-multimodal-3/refs/heads/main/images/banana.jpg"
* }
* ]
* }
* ],
* "model": "voyage-multimodal-3"
* }
* </span></code></pre>
* </details>
* <details> <summary> Example payload where <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code> contains a Base64 image </summary>
* <br>
* Below is an equivalent example to the one above where the image content is a Base64 image instead of a URL. (Base64 images can be lengthy, so the example only shows a shortened version.)
* <pre><code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">
* {
* "inputs": [
* {
* "content": [
* {
* "type": "text",
* "text": "This is a banana."
* },
* {
* "type": "image_base64",
* "image_base64": "..."
* }
* ]
* }
* ],
* "model": "voyage-multimodal-3"
* }
* </span></code></pre>
* </details>
* </li>
* </ul>
*
*/
inputs: VoyageAI.MultimodalEmbedRequestInputsItem[];
/**
* Name of the model. Currently, the only supported model is `voyage-multimodal-3`.
*
*/
model: string;
/**
* Type of the input text. Defaults to `null`. Other options: `query`, `document`.
* <ul> <li> When <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">null</span></code>, the embedding model directly converts your input data into numerical vectors. For retrieval/search purposes—where an input (called a "query") is used to search for relevant pieces of information (referred to as "documents")—we recommend specifying whether your inputs are intended as queries or documents by setting <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> to <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">query</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">document</span></code>, respectively. In these cases, Voyage prepends a prompt to your input before vectorizing it, helping the model create more effective vectors tailored for retrieval/search tasks. Since inputs can be multimodal, queries and documents can be text, images, or an interleaving of both modalities. Embeddings generated with and without the <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> argument are compatible. </li> <li> For transparency, the following prompts are prepended to your input. </li><p></p>
* <ul>
* <li> For <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">query</span></code>, the prompt is <i>"Represent the query for retrieving supporting documents: ".</i> </li>
* <li> For <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">document</span></code>, the prompt is <i>"Represent the query for retrieving supporting documents: ".</i> </li>
* </ul>
* <ul></ul></ul>
*
*/
inputType?: VoyageAI.MultimodalEmbedRequestInputType;
/**
* Whether to truncate the input texts to fit within the context length. Defaults to `true`. <ul> <li> If `true`, over-length input texts will be truncated to fit within the context length, before vectorized by the embedding model. </li> <li> If `false`, an error will be raised if any given text exceeds the context length. </li> </ul>
*
*/
truncation?: boolean;
/**
* Format in which the embeddings are encoded. We support two options: <ul> <li> If not specified (defaults to `null`): the embeddings are represented as lists of floating-point numbers; </li> <li> `base64`: the embeddings are compressed to [base64](https://docs.python.org/3/library/base64.html) encodings. </li> </ul>
*
*/
encodingFormat?: "base64";
}