UNPKG

voyageai

Version:

[![fern shield](https://img.shields.io/badge/%F0%9F%8C%BF-Built%20with%20Fern-brightgreen)](https://buildwithfern.com?utm_source=github&utm_medium=github&utm_campaign=readme&utm_source=https%3A%2F%2Fgithub.com%2Fvoyage-ai%2Ftypescript-sdk) [![npm shield](

105 lines (104 loc) 10.7 kB
/** * This file was auto-generated by Fern from our API Definition. */ import * as VoyageAI from "../../index"; /** * @example * { * inputs: [{}], * model: "model" * } */ export interface MultimodalEmbedRequest { /** * A list of multimodal inputs to be vectorized. * A single input in the list is a dictionary containing a single key "content", whose value represents a sequence of text and images. * <ul><p></p> * <li> The value of&nbsp;<code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">"content"</span></code>&nbsp;is a list of dictionaries, each representing a single piece of text or image. The dictionaries have four possible keys: * <ol class="nested-ordered-list"> * <li> <b>type</b>: Specifies the type of the piece of the content. Allowed values are <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">text</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>, or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code>.</li> * <li> <b>text</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">text</span></code>. The value should be a text string.</li> * <li> <b>image_base64</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code>. The value should be a Base64-encoded image in the <a target="_blank" href="https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data">data URL</a> format <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">data:[&lt;mediatype&gt;];base64,&lt;data&gt;</span></code>. Currently supported <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">mediatypes</span></code> are: <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/png</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/jpeg</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/webp</span></code>, and <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/gif</span></code>.</li> * <li> <b>image_url</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>. The value should be a URL linking to the image. We support PNG, JPEG, WEBP, and GIF images.</li> * </ol> * </li> * <li> <b>Note</b>: Only one of the keys, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>, should be present in each dictionary for image data. Consistency is required within a request, meaning each request should use either <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code> exclusively for images, not both.<br> * <br> * <details> <summary> Example payload where <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code>&nbsp;contains an image as a URL </summary> * <br> * The <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code> list contains a single input, which consists of a piece of text and an image (which is provided via a URL). * <pre><code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter"> * { * "inputs": [ * { * "content": [ * { * "type": "text", * "text": "This is a banana." * }, * { * "type": "image_url", * "image_url": "https://raw.githubusercontent.com/voyage-ai/voyage-multimodal-3/refs/heads/main/images/banana.jpg" * } * ] * } * ], * "model": "voyage-multimodal-3" * } * </span></code></pre> * </details> * <details> <summary> Example payload where <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code>&nbsp;contains a Base64 image </summary> * <br> * Below is an equivalent example to the one above where the image content is a Base64 image instead of a URL. (Base64 images can be lengthy, so the example only shows a shortened version.) * <pre><code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter"> * { * "inputs": [ * { * "content": [ * { * "type": "text", * "text": "This is a banana." * }, * { * "type": "image_base64", * "image_base64": "..." * } * ] * } * ], * "model": "voyage-multimodal-3" * } * </span></code></pre> * </details> * </li> * </ul> * */ inputs: VoyageAI.MultimodalEmbedRequestInputsItem[]; /** * Name of the model. Currently, the only supported model is `voyage-multimodal-3`. * */ model: string; /** * Type of the input text. Defaults to `null`. Other options: `query`, `document`. * <ul> <li> When <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">null</span></code>, the embedding model directly converts your input data into numerical vectors. For retrieval/search purposes—where an input (called a "query") is used to search for relevant pieces of information (referred to as "documents")—we recommend specifying whether your inputs are intended as queries or documents by setting <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> to <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">query</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">document</span></code>, respectively. In these cases, Voyage prepends a prompt to your input before vectorizing it, helping the model create more effective vectors tailored for retrieval/search tasks. Since inputs can be multimodal, queries and documents can be text, images, or an interleaving of both modalities. Embeddings generated with and without the <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> argument are compatible. </li> <li> For transparency, the following prompts are prepended to your input. </li><p></p> * <ul> * <li> For&nbsp;<code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">query</span></code>, the prompt is <i>"Represent the query for retrieving supporting documents:&nbsp;".</i> </li> * <li> For&nbsp;<code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">document</span></code>, the prompt is <i>"Represent the query for retrieving supporting documents:&nbsp;".</i> </li> * </ul> * <ul></ul></ul> * */ inputType?: VoyageAI.MultimodalEmbedRequestInputType; /** * Whether to truncate the input texts to fit within the context length. Defaults to `true`. <ul> <li> If `true`, over-length input texts will be truncated to fit within the context length, before vectorized by the embedding model. </li> <li> If `false`, an error will be raised if any given text exceeds the context length. </li> </ul> * */ truncation?: boolean; /** * Format in which the embeddings are encoded. We support two options: <ul> <li> If not specified (defaults to `null`): the embeddings are represented as lists of floating-point numbers; </li> <li> `base64`: the embeddings are compressed to [base64](https://docs.python.org/3/library/base64.html) encodings. </li> </ul> * */ encodingFormat?: "base64"; }