UNPKG

voyageai

Version:

[![fern shield](https://img.shields.io/badge/%F0%9F%8C%BF-Built%20with%20Fern-brightgreen)](https://buildwithfern.com?utm_source=github&utm_medium=github&utm_campaign=readme&utm_source=https%3A%2F%2Fgithub.com%2Fvoyage-ai%2Ftypescript-sdk) [![npm shield](

651 lines (646 loc) 32.2 kB
types: EmbedRequestInput: discriminated: false docs: > A single text string, or a list of texts as a list of strings. Currently, we have two constraints on the list: <ul> <li> The maximum length of the list is 128. </li> <li> The total number of tokens in the list is at most 320K for `voyage-2`, and 120K for `voyage-large-2`, `voyage-finance-2`, `voyage-multilingual-2`, `voyage-law-2`, and `voyage-code-2`. </li> <ul> union: - string - list<string> source: openapi: openapi/openapi.yml inline: true EmbedRequestInputType: enum: - query - document docs: > Type of the input text. Defaults to `null`. Other options: `query`, `document`. inline: true source: openapi: openapi/openapi.yml EmbedRequestOutputDtype: enum: - float - int8 - uint8 - binary - ubinary docs: > The data type for the embeddings to be returned. Defaults to `float`. Other options: `int8`, `uint8`, `binary`, `ubinary`. `float` is supported for all models. `int8`, `uint8`, `binary`, and `ubinary` are supported by `voyage-3-large` and `voyage-code-3`. Please see our guide for more details about output data types. inline: true source: openapi: openapi/openapi.yml EmbedResponseDataItem: properties: object: type: optional<string> docs: The object type, which is always "embedding". embedding: type: optional<list<double>> docs: > Each embedding is a vector represented as an array of `float` numbers when `output_dtype` is set to `float` and as an array of integers for all other values of `output_dtype` (`int8`, `uint8`, `binary`, and `ubinary`). The length of this vector varies depending on the specific model, `output_dimension`, and `output_dtype`. index: type: optional<integer> docs: > An integer representing the index of the embedding within the list of embeddings. source: openapi: openapi/openapi.yml inline: true EmbedResponseUsage: properties: total_tokens: type: optional<integer> docs: The total number of tokens used for computing the embeddings. source: openapi: openapi/openapi.yml inline: true EmbedResponse: properties: object: type: optional<string> docs: The object type, which is always "list". data: type: optional<list<EmbedResponseDataItem>> docs: An array of embedding objects. model: type: optional<string> docs: Name of the model. usage: optional<EmbedResponseUsage> source: openapi: openapi/openapi.yml RerankResponseDataItem: properties: index: type: optional<integer> docs: The index of the document in the input list. relevance_score: type: optional<double> docs: The relevance score of the document with respect to the query. document: type: optional<string> docs: > The document string. Only returned when return_documents is set to true. source: openapi: openapi/openapi.yml inline: true RerankResponseUsage: properties: total_tokens: type: optional<integer> docs: The total number of tokens used for computing the reranking. source: openapi: openapi/openapi.yml inline: true RerankResponse: properties: object: type: optional<string> docs: The object type, which is always "list". data: type: optional<list<RerankResponseDataItem>> docs: > An array of the reranking results, sorted by the descending order of relevance scores. model: type: optional<string> docs: Name of the model. usage: optional<RerankResponseUsage> source: openapi: openapi/openapi.yml MultimodalEmbedRequestInputsItemContentItem: properties: type: type: string docs: > Specifies the type of the piece of the content. Allowed values are `text`, `image_url`, or `image_base64`. text: type: optional<string> docs: Only present when type is `text`. The value should be a text string. image_base64: type: optional<string> docs: > Only present when type is `image_base64`. The value should be a Base64-encoded image in the data URL format `data:[<mediatype>];base64,<data>`. Currently supported mediatypes are: `image/png`, `image/jpeg`, `image/webp`, and `image/gif`. image_url: type: optional<string> docs: > Only present when `type` is `image_url`. The value should be a URL linking to the image. We support PNG, JPEG, WEBP, and GIF images. source: openapi: openapi/openapi.yml inline: true MultimodalEmbedRequestInputsItem: properties: content: optional<list<MultimodalEmbedRequestInputsItemContentItem>> source: openapi: openapi/openapi.yml inline: true MultimodalEmbedRequestInputType: enum: - query - document docs: > Type of the input text. Defaults to `null`. Other options: `query`, `document`. <ul> <li> When <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">null</span></code>, the embedding model directly converts your input data into numerical vectors. For retrieval/search purposes—where an input (called a "query") is used to search for relevant pieces of information (referred to as "documents")—we recommend specifying whether your inputs are intended as queries or documents by setting <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> to <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">query</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">document</span></code>, respectively. In these cases, Voyage prepends a prompt to your input before vectorizing it, helping the model create more effective vectors tailored for retrieval/search tasks. Since inputs can be multimodal, queries and documents can be text, images, or an interleaving of both modalities. Embeddings generated with and without the <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> argument are compatible. </li> <li> For transparency, the following prompts are prepended to your input. </li><p></p> <ul> <li> For&nbsp;<code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">query</span></code>, the prompt is <i>"Represent the query for retrieving supporting documents:&nbsp;".</i> </li> <li> For&nbsp;<code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">document</span></code>, the prompt is <i>"Represent the query for retrieving supporting documents:&nbsp;".</i> </li> </ul> <ul></ul></ul> inline: true source: openapi: openapi/openapi.yml MultimodalEmbedResponseDataItem: properties: object: type: optional<string> docs: The object type, which is always "embedding". embedding: type: optional<list<double>> docs: > The embedding vector consists of a list of floating-point numbers. The length of this vector varies depending on the specific model. index: type: optional<integer> docs: > An integer representing the index of the embedding within the list of embeddings. source: openapi: openapi/openapi.yml inline: true MultimodalEmbedResponseUsage: properties: total_tokens: type: optional<integer> docs: The total number of tokens used for computing the embeddings. source: openapi: openapi/openapi.yml inline: true MultimodalEmbedResponse: properties: object: type: optional<string> docs: The object type, which is always "list". data: type: optional<list<MultimodalEmbedResponseDataItem>> docs: An array of embedding objects. model: type: optional<string> docs: Name of the model. usage: optional<MultimodalEmbedResponseUsage> source: openapi: openapi/openapi.yml service: auth: false base-path: '' endpoints: embed: path: /embeddings method: POST auth: true docs: >- Voyage embedding endpoint receives as input a string (or a list of strings) and other arguments such as the preferred model name, and returns a response containing a list of embeddings. source: openapi: openapi/openapi.yml display-name: Embeddings request: name: EmbedRequest body: properties: input: type: EmbedRequestInput docs: > A single text string, or a list of texts as a list of strings. Currently, we have two constraints on the list: <ul> <li> The maximum length of the list is 128. </li> <li> The total number of tokens in the list is at most 320K for `voyage-2`, and 120K for `voyage-large-2`, `voyage-finance-2`, `voyage-multilingual-2`, `voyage-law-2`, and `voyage-code-2`. </li> <ul> model: type: string docs: > Name of the model. Recommended options: `voyage-2`, `voyage-large-2`, `voyage-finance-2`, `voyage-multilingual-2`, `voyage-law-2`, `voyage-code-2`. input_type: type: optional<EmbedRequestInputType> docs: > Type of the input text. Defaults to `null`. Other options: `query`, `document`. truncation: type: optional<boolean> docs: > Whether to truncate the input texts to fit within the context length. Defaults to `true`. <ul> <li> If `true`, over-length input texts will be truncated to fit within the context length, before vectorized by the embedding model. </li> <li> If `false`, an error will be raised if any given text exceeds the context length. </li> </ul> encoding_format: type: optional<literal<"base64">> docs: > Format in which the embeddings are encoded. We support two options: <ul> <li> If not specified (defaults to `null`): the embeddings are represented as lists of floating-point numbers; </li> <li> `base64`: the embeddings are compressed to [base64](https://docs.python.org/3/library/base64.html) encodings. </li> </ul> output_dimension: type: optional<integer> docs: > The number of dimensions for resulting output embeddings. Defaults to `null`. output_dtype: type: optional<EmbedRequestOutputDtype> docs: > The data type for the embeddings to be returned. Defaults to `float`. Other options: `int8`, `uint8`, `binary`, `ubinary`. `float` is supported for all models. `int8`, `uint8`, `binary`, and `ubinary` are supported by `voyage-3-large` and `voyage-code-3`. Please see our guide for more details about output data types. content-type: application/json response: docs: Success type: EmbedResponse status-code: 200 examples: - name: Success request: input: input model: model response: body: object: object data: - object: object embedding: - 1.1 index: 1 model: model usage: total_tokens: 1 code-samples: - language: shell code: |- curl --request POST \ --url https://api.voyageai.com/v1/embeddings \ --header "Authorization: Bearer $VOYAGE_API_KEY" \ --header "content-type: application/json" \ --data ' { "input": [ "Sample text 1", "Sample text 2" ], "model": "voyage-large-2" } ' rerank: path: /rerank method: POST auth: true docs: > Voyage reranker endpoint receives as input a query, a list of documents, and other arguments such as the model name, and returns a response containing the reranking results. source: openapi: openapi/openapi.yml display-name: Reranker request: name: RerankRequest body: properties: query: type: string docs: > The query as a string. The query can contain a maximum of 1000 tokens for `rerank-lite-1` and 2000 tokens for `rerank-1`. documents: docs: > The documents to be reranked as a list of strings. <ul> <li> The number of documents cannot exceed 1000. </li> <li> The sum of the number of tokens in the query and the number of tokens in any single document cannot exceed 4000 for `rerank-lite-1` and 8000 for `rerank-1`. </li> <li> he total number of tokens, defined as "the number of query tokens × the number of documents + sum of the number of tokens in all documents", cannot exceed 300K for `rerank-lite-1` and 100K for `rerank-1`. Please see our <a href="https://docs.voyageai.com/docs/faq#what-is-the-total-number-of-tokens-for-the-rerankers">FAQ</a>. </li> </ul> type: list<string> model: type: string docs: > Name of the model. Recommended options: `rerank-lite-1`, `rerank-1`. top_k: type: optional<integer> docs: > The number of most relevant documents to return. If not specified, the reranking results of all documents will be returned. return_documents: type: optional<boolean> docs: > Whether to return the documents in the response. Defaults to `false`. <ul> <li> If `false`, the API will return a list of {"index", "relevance_score"} where "index" refers to the index of a document within the input list. </li> <li> If `true`, the API will return a list of {"index", "document", "relevance_score"} where "document" is the corresponding document from the input list. </li> </ul> truncation: type: optional<boolean> docs: > Whether to truncate the input to satisfy the "context length limit" on the query and the documents. Defaults to `true`. <ul> <li> If `true`, the query and documents will be truncated to fit within the context length limit, before processed by the reranker model. </li> <li> If `false`, an error will be raised when the query exceeds 1000 tokens for `rerank-lite-1` and 2000 tokens for `rerank-1`, or the sum of the number of tokens in the query and the number of tokens in any single document exceeds 4000 for `rerank-lite-1` and 8000 for `rerank-1`. </li> </ul> content-type: application/json response: docs: Success type: RerankResponse status-code: 200 examples: - name: Success request: query: query documents: - documents model: model response: body: object: object data: - index: 1 relevance_score: 1.1 document: document model: model usage: total_tokens: 1 code-samples: - language: shell code: |- curl --request POST \ --url https://api.voyageai.com/v1/rerank \ --header "Authorization: Bearer $VOYAGE_API_KEY" \ --header "content-type: application/json" \ --data ' { "query": "Sample query", "documents": [ "Sample document 1", "Sample document 2" ], "model": "rerank-lite-1" } ' multimodal-embed: path: /multimodalembeddings method: POST auth: true docs: >- The Voyage multimodal embedding endpoint returns vector representations for a given list of multimodal inputs consisting of text, images, or an interleaving of both modalities. source: openapi: openapi/openapi.yml display-name: Multimodal embeddings request: name: MultimodalEmbedRequest body: properties: inputs: docs: > A list of multimodal inputs to be vectorized. A single input in the list is a dictionary containing a single key "content", whose value represents a sequence of text and images. <ul><p></p> <li> The value of&nbsp;<code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">"content"</span></code>&nbsp;is a list of dictionaries, each representing a single piece of text or image. The dictionaries have four possible keys: <ol class="nested-ordered-list"> <li> <b>type</b>: Specifies the type of the piece of the content. Allowed values are <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">text</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>, or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code>.</li> <li> <b>text</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">text</span></code>. The value should be a text string.</li> <li> <b>image_base64</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code>. The value should be a Base64-encoded image in the <a target="_blank" href="https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data">data URL</a> format <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">data:[&lt;mediatype&gt;];base64,&lt;data&gt;</span></code>. Currently supported <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">mediatypes</span></code> are: <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/png</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/jpeg</span></code>, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/webp</span></code>, and <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image/gif</span></code>.</li> <li> <b>image_url</b>: Only present when <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>. The value should be a URL linking to the image. We support PNG, JPEG, WEBP, and GIF images.</li> </ol> </li> <li> <b>Note</b>: Only one of the keys, <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code>, should be present in each dictionary for image data. Consistency is required within a request, meaning each request should use either <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_base64</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">image_url</span></code> exclusively for images, not both.<br> <br> <details> <summary> Example payload where <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code>&nbsp;contains an image as a URL </summary> <br> The <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code> list contains a single input, which consists of a piece of text and an image (which is provided via a URL). <pre><code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter"> { "inputs": [ { "content": [ { "type": "text", "text": "This is a banana." }, { "type": "image_url", "image_url": "https://raw.githubusercontent.com/voyage-ai/voyage-multimodal-3/refs/heads/main/images/banana.jpg" } ] } ], "model": "voyage-multimodal-3" } </span></code></pre> </details> <details> <summary> Example payload where <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">inputs</span></code>&nbsp;contains a Base64 image </summary> <br> Below is an equivalent example to the one above where the image content is a Base64 image instead of a URL. (Base64 images can be lengthy, so the example only shows a shortened version.) <pre><code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter"> { "inputs": [ { "content": [ { "type": "text", "text": "This is a banana." }, { "type": "image_base64", "image_base64": "..." } ] } ], "model": "voyage-multimodal-3" } </span></code></pre> </details> </li> </ul> type: list<MultimodalEmbedRequestInputsItem> model: type: string docs: > Name of the model. Currently, the only supported model is `voyage-multimodal-3`. input_type: type: optional<MultimodalEmbedRequestInputType> docs: > Type of the input text. Defaults to `null`. Other options: `query`, `document`. <ul> <li> When <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> is <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">null</span></code>, the embedding model directly converts your input data into numerical vectors. For retrieval/search purposes—where an input (called a "query") is used to search for relevant pieces of information (referred to as "documents")—we recommend specifying whether your inputs are intended as queries or documents by setting <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> to <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">query</span></code> or <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">document</span></code>, respectively. In these cases, Voyage prepends a prompt to your input before vectorizing it, helping the model create more effective vectors tailored for retrieval/search tasks. Since inputs can be multimodal, queries and documents can be text, images, or an interleaving of both modalities. Embeddings generated with and without the <code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">input_type</span></code> argument are compatible. </li> <li> For transparency, the following prompts are prepended to your input. </li><p></p> <ul> <li> For&nbsp;<code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">query</span></code>, the prompt is <i>"Represent the query for retrieving supporting documents:&nbsp;".</i> </li> <li> For&nbsp;<code class="rdmd-code lang- theme-light" data-lang="" name="" tabindex="0"><span class="cm-s-neo" data-testid="SyntaxHighlighter">document</span></code>, the prompt is <i>"Represent the query for retrieving supporting documents:&nbsp;".</i> </li> </ul> <ul></ul></ul> truncation: type: optional<boolean> docs: > Whether to truncate the input texts to fit within the context length. Defaults to `true`. <ul> <li> If `true`, over-length input texts will be truncated to fit within the context length, before vectorized by the embedding model. </li> <li> If `false`, an error will be raised if any given text exceeds the context length. </li> </ul> encoding_format: type: optional<literal<"base64">> docs: > Format in which the embeddings are encoded. We support two options: <ul> <li> If not specified (defaults to `null`): the embeddings are represented as lists of floating-point numbers; </li> <li> `base64`: the embeddings are compressed to [base64](https://docs.python.org/3/library/base64.html) encodings. </li> </ul> content-type: application/json response: docs: Success type: MultimodalEmbedResponse status-code: 200 examples: - name: Success request: inputs: - {} model: model response: body: object: object data: - object: object embedding: - 1.1 index: 1 model: model usage: total_tokens: 1 code-samples: - language: shell code: |- curl -X POST https://api.voyageai.com/v1/multimodalembeddings \ -H "Authorization: Bearer $VOYAGE_API_KEY" \ -H "content-type: application/json" \ -d ' { "inputs": [ { "content": [ { "type": "text", "text": "This is a banana." }, { "type": "image_url", "image_url": "https://raw.githubusercontent.com/voyage-ai/voyage-multimodal-3/refs/heads/main/images/banana.jpg" } ] } ], "model": "voyage-multimodal-3" }' source: openapi: openapi/openapi.yml