vibe-coder-mcp
Version:
Production-ready MCP server with complete agent integration, multi-transport support, and comprehensive development automation tools for AI-assisted workflows.
44 lines • 1.63 kB
TypeScript
import { AutoResearchDetectorConfig, ResearchTriggerContext, ResearchTriggerEvaluation } from '../types/research-types.js';
export declare class AutoResearchDetector {
private static instance;
private config;
private evaluationCache;
private performanceMetrics;
private constructor();
static getInstance(): AutoResearchDetector;
evaluateResearchNeed(context: ResearchTriggerContext): Promise<ResearchTriggerEvaluation>;
private evaluateTriggerConditions;
private evaluateProjectType;
private evaluateTaskComplexity;
private evaluateKnowledgeGap;
private evaluateDomainSpecific;
private makeResearchDecision;
private createDecision;
private calculateContextQuality;
private determineInsufficientContext;
private extractTechnologyStack;
private identifyUnfamiliarTechnologies;
private isSpecializedDomain;
private calculateDomainComplexity;
private determineResearchScope;
private generateEvaluationId;
private getCachedEvaluation;
private cacheEvaluation;
private updatePerformanceMetrics;
private hashString;
private getEmptyConditions;
private initializeConfig;
private getDefaultConfig;
updateConfig(newConfig: Partial<AutoResearchDetectorConfig>): void;
getConfig(): AutoResearchDetectorConfig;
getPerformanceMetrics(): {
cacheSize: number;
cacheHitRate: number;
totalEvaluations: number;
cacheHits: number;
averageEvaluationTime: number;
};
clearCache(): void;
resetPerformanceMetrics(): void;
}
//# sourceMappingURL=auto-research-detector.d.ts.map