UNPKG

vibe-coder-mcp

Version:

Production-ready MCP server with complete agent integration, multi-transport support, and comprehensive development automation tools for AI-assisted workflows.

44 lines 1.63 kB
import { AutoResearchDetectorConfig, ResearchTriggerContext, ResearchTriggerEvaluation } from '../types/research-types.js'; export declare class AutoResearchDetector { private static instance; private config; private evaluationCache; private performanceMetrics; private constructor(); static getInstance(): AutoResearchDetector; evaluateResearchNeed(context: ResearchTriggerContext): Promise<ResearchTriggerEvaluation>; private evaluateTriggerConditions; private evaluateProjectType; private evaluateTaskComplexity; private evaluateKnowledgeGap; private evaluateDomainSpecific; private makeResearchDecision; private createDecision; private calculateContextQuality; private determineInsufficientContext; private extractTechnologyStack; private identifyUnfamiliarTechnologies; private isSpecializedDomain; private calculateDomainComplexity; private determineResearchScope; private generateEvaluationId; private getCachedEvaluation; private cacheEvaluation; private updatePerformanceMetrics; private hashString; private getEmptyConditions; private initializeConfig; private getDefaultConfig; updateConfig(newConfig: Partial<AutoResearchDetectorConfig>): void; getConfig(): AutoResearchDetectorConfig; getPerformanceMetrics(): { cacheSize: number; cacheHitRate: number; totalEvaluations: number; cacheHits: number; averageEvaluationTime: number; }; clearCache(): void; resetPerformanceMetrics(): void; } //# sourceMappingURL=auto-research-detector.d.ts.map