vibe-coder-mcp
Version:
Production-ready MCP server with complete agent integration, multi-transport support, and comprehensive development automation tools for AI-assisted workflows.
84 lines • 4.08 kB
TypeScript
import { OpenRouterConfig } from '../../../types/workflow.js';
import type { IntentAnalysisResult, PromptRefinementResult, FileDiscoveryResult, RelevanceScoringResult, MetaPromptGenerationResult, ProjectTypeAnalysisResult, LanguageAnalysisResult } from '../types/llm-tasks.js';
export declare class ContextCuratorLLMService {
private static instance;
private configLoader;
private constructor();
static getInstance(): ContextCuratorLLMService;
private performResilientLlmCall;
private isRetryableNetworkError;
private categorizeNetworkError;
private getSuggestedAction;
performIntentAnalysis(userPrompt: string, codemapContent: string, config: OpenRouterConfig, additionalContext?: {
projectType?: string;
projectAnalysis?: ProjectTypeAnalysisResult;
languageAnalysis?: LanguageAnalysisResult;
existingPatterns?: string[];
patternConfidence?: {
[pattern: string]: number;
};
patternEvidence?: {
[pattern: string]: string[];
};
technicalConstraints?: string[];
}): Promise<IntentAnalysisResult>;
performPromptRefinement(originalPrompt: string, intentAnalysis: IntentAnalysisResult, codemapContent: string, config: OpenRouterConfig, additionalContext?: {
projectAnalysis?: ProjectTypeAnalysisResult;
languageAnalysis?: LanguageAnalysisResult;
existingPatterns?: string[];
patternConfidence?: {
[pattern: string]: number;
};
patternEvidence?: {
[pattern: string]: string[];
};
technicalConstraints?: string[];
qualityRequirements?: string[];
timelineConstraints?: string;
teamExpertise?: string[];
}): Promise<PromptRefinementResult>;
performFileDiscovery(originalPrompt: string, intentAnalysis: IntentAnalysisResult, codemapContent: string, config: OpenRouterConfig, searchStrategy?: 'semantic_similarity' | 'keyword_matching' | 'semantic_and_keyword' | 'structural_analysis', additionalContext?: {
filePatterns?: string[];
excludePatterns?: string[];
focusDirectories?: string[];
maxFiles?: number;
tokenBudget?: number;
}): Promise<FileDiscoveryResult>;
private fixAbstractFileNames;
private findBestFilePathMatch;
private retryRelevanceScoring;
private processFilesInChunks;
performRelevanceScoring(originalPrompt: string, intentAnalysis: IntentAnalysisResult, refinedPrompt: string, fileDiscoveryResult: FileDiscoveryResult, config: OpenRouterConfig, scoringStrategy?: 'semantic_similarity' | 'keyword_density' | 'structural_importance' | 'hybrid', additionalContext?: {
codemapContent?: string;
projectAnalysis?: ProjectTypeAnalysisResult;
languageAnalysis?: LanguageAnalysisResult;
architecturalPatterns?: Record<string, unknown>;
priorityWeights?: {
semantic: number;
keyword: number;
structural: number;
};
categoryFilters?: string[];
minRelevanceThreshold?: number;
}, externalTaskId?: string): Promise<RelevanceScoringResult>;
performMetaPromptGeneration(originalPrompt: string, intentAnalysis: IntentAnalysisResult, refinedPrompt: string, relevanceScoringResult: RelevanceScoringResult, config: OpenRouterConfig, additionalContext?: {
codemapContent?: string;
projectAnalysis?: ProjectTypeAnalysisResult;
languageAnalysis?: LanguageAnalysisResult;
architecturalPatterns?: string[];
patternConfidence?: {
[pattern: string]: number;
};
patternEvidence?: {
[pattern: string]: string[];
};
technicalConstraints?: string[];
qualityRequirements?: string[];
teamExpertise?: string[];
timelineConstraints?: string;
existingGuidelines?: string[];
}): Promise<MetaPromptGenerationResult>;
private calculateSimpleFallbackScore;
private extractCategoriesFromPath;
}
//# sourceMappingURL=llm-integration.d.ts.map