UNPKG

vibe-coder-mcp

Version:

Production-ready MCP server with complete agent integration, multi-transport support, and comprehensive development automation tools for AI-assisted workflows.

84 lines 4.08 kB
import { OpenRouterConfig } from '../../../types/workflow.js'; import type { IntentAnalysisResult, PromptRefinementResult, FileDiscoveryResult, RelevanceScoringResult, MetaPromptGenerationResult, ProjectTypeAnalysisResult, LanguageAnalysisResult } from '../types/llm-tasks.js'; export declare class ContextCuratorLLMService { private static instance; private configLoader; private constructor(); static getInstance(): ContextCuratorLLMService; private performResilientLlmCall; private isRetryableNetworkError; private categorizeNetworkError; private getSuggestedAction; performIntentAnalysis(userPrompt: string, codemapContent: string, config: OpenRouterConfig, additionalContext?: { projectType?: string; projectAnalysis?: ProjectTypeAnalysisResult; languageAnalysis?: LanguageAnalysisResult; existingPatterns?: string[]; patternConfidence?: { [pattern: string]: number; }; patternEvidence?: { [pattern: string]: string[]; }; technicalConstraints?: string[]; }): Promise<IntentAnalysisResult>; performPromptRefinement(originalPrompt: string, intentAnalysis: IntentAnalysisResult, codemapContent: string, config: OpenRouterConfig, additionalContext?: { projectAnalysis?: ProjectTypeAnalysisResult; languageAnalysis?: LanguageAnalysisResult; existingPatterns?: string[]; patternConfidence?: { [pattern: string]: number; }; patternEvidence?: { [pattern: string]: string[]; }; technicalConstraints?: string[]; qualityRequirements?: string[]; timelineConstraints?: string; teamExpertise?: string[]; }): Promise<PromptRefinementResult>; performFileDiscovery(originalPrompt: string, intentAnalysis: IntentAnalysisResult, codemapContent: string, config: OpenRouterConfig, searchStrategy?: 'semantic_similarity' | 'keyword_matching' | 'semantic_and_keyword' | 'structural_analysis', additionalContext?: { filePatterns?: string[]; excludePatterns?: string[]; focusDirectories?: string[]; maxFiles?: number; tokenBudget?: number; }): Promise<FileDiscoveryResult>; private fixAbstractFileNames; private findBestFilePathMatch; private retryRelevanceScoring; private processFilesInChunks; performRelevanceScoring(originalPrompt: string, intentAnalysis: IntentAnalysisResult, refinedPrompt: string, fileDiscoveryResult: FileDiscoveryResult, config: OpenRouterConfig, scoringStrategy?: 'semantic_similarity' | 'keyword_density' | 'structural_importance' | 'hybrid', additionalContext?: { codemapContent?: string; projectAnalysis?: ProjectTypeAnalysisResult; languageAnalysis?: LanguageAnalysisResult; architecturalPatterns?: Record<string, unknown>; priorityWeights?: { semantic: number; keyword: number; structural: number; }; categoryFilters?: string[]; minRelevanceThreshold?: number; }, externalTaskId?: string): Promise<RelevanceScoringResult>; performMetaPromptGeneration(originalPrompt: string, intentAnalysis: IntentAnalysisResult, refinedPrompt: string, relevanceScoringResult: RelevanceScoringResult, config: OpenRouterConfig, additionalContext?: { codemapContent?: string; projectAnalysis?: ProjectTypeAnalysisResult; languageAnalysis?: LanguageAnalysisResult; architecturalPatterns?: string[]; patternConfidence?: { [pattern: string]: number; }; patternEvidence?: { [pattern: string]: string[]; }; technicalConstraints?: string[]; qualityRequirements?: string[]; teamExpertise?: string[]; timelineConstraints?: string; existingGuidelines?: string[]; }): Promise<MetaPromptGenerationResult>; private calculateSimpleFallbackScore; private extractCategoriesFromPath; } //# sourceMappingURL=llm-integration.d.ts.map