venn.js
Version:
Area Proportional Venn and Euler Diagrams
678 lines (577 loc) • 23.7 kB
JavaScript
import {nelderMead, bisect, conjugateGradient, zeros, zerosM, norm2,
scale} from '../node_modules/fmin/index.js';
import {intersectionArea, circleOverlap, circleCircleIntersection, distance} from './circleintersection';
/** given a list of set objects, and their corresponding overlaps.
updates the (x, y, radius) attribute on each set such that their positions
roughly correspond to the desired overlaps */
export function venn(areas, parameters) {
parameters = parameters || {};
parameters.maxIterations = parameters.maxIterations || 500;
var initialLayout = parameters.initialLayout || bestInitialLayout;
var loss = parameters.lossFunction || lossFunction;
// add in missing pairwise areas as having 0 size
areas = addMissingAreas(areas);
// initial layout is done greedily
var circles = initialLayout(areas, parameters);
// transform x/y coordinates to a vector to optimize
var initial = [], setids = [], setid;
for (setid in circles) {
if (circles.hasOwnProperty(setid)) {
initial.push(circles[setid].x);
initial.push(circles[setid].y);
setids.push(setid);
}
}
// optimize initial layout from our loss function
var totalFunctionCalls = 0;
var solution = nelderMead(
function(values) {
totalFunctionCalls += 1;
var current = {};
for (var i = 0; i < setids.length; ++i) {
var setid = setids[i];
current[setid] = {x: values[2 * i],
y: values[2 * i + 1],
radius : circles[setid].radius,
// size : circles[setid].size
};
}
return loss(current, areas);
},
initial,
parameters);
// transform solution vector back to x/y points
var positions = solution.x;
for (var i = 0; i < setids.length; ++i) {
setid = setids[i];
circles[setid].x = positions[2 * i];
circles[setid].y = positions[2 * i + 1];
}
return circles;
}
var SMALL = 1e-10;
/** Returns the distance necessary for two circles of radius r1 + r2 to
have the overlap area 'overlap' */
export function distanceFromIntersectArea(r1, r2, overlap) {
// handle complete overlapped circles
if (Math.min(r1, r2) * Math.min(r1,r2) * Math.PI <= overlap + SMALL) {
return Math.abs(r1 - r2);
}
return bisect(function(distance) {
return circleOverlap(r1, r2, distance) - overlap;
}, 0, r1 + r2);
}
/** Missing pair-wise intersection area data can cause problems:
treating as an unknown means that sets will be laid out overlapping,
which isn't what people expect. To reflect that we want disjoint sets
here, set the overlap to 0 for all missing pairwise set intersections */
function addMissingAreas(areas) {
areas = areas.slice();
// two circle intersections that aren't defined
var ids = [], pairs = {}, i, j, a, b;
for (i = 0; i < areas.length; ++i) {
var area = areas[i];
if (area.sets.length == 1) {
ids.push(area.sets[0]);
} else if (area.sets.length == 2) {
a = area.sets[0];
b = area.sets[1];
pairs[[a, b]] = true;
pairs[[b, a]] = true;
}
}
ids.sort(function(a, b) { return a > b; });
for (i = 0; i < ids.length; ++i) {
a = ids[i];
for (j = i + 1; j < ids.length; ++j) {
b = ids[j];
if (!([a, b] in pairs)) {
areas.push({'sets': [a, b],
'size': 0});
}
}
}
return areas;
}
/// Returns two matrices, one of the euclidean distances between the sets
/// and the other indicating if there are subset or disjoint set relationships
export function getDistanceMatrices(areas, sets, setids) {
// initialize an empty distance matrix between all the points
var distances = zerosM(sets.length, sets.length),
constraints = zerosM(sets.length, sets.length);
// compute required distances between all the sets such that
// the areas match
areas.filter(function(x) { return x.sets.length == 2; })
.map(function(current) {
var left = setids[current.sets[0]],
right = setids[current.sets[1]],
r1 = Math.sqrt(sets[left].size / Math.PI),
r2 = Math.sqrt(sets[right].size / Math.PI),
distance = distanceFromIntersectArea(r1, r2, current.size);
distances[left][right] = distances[right][left] = distance;
// also update constraints to indicate if its a subset or disjoint
// relationship
var c = 0;
if (current.size + 1e-10 >= Math.min(sets[left].size,
sets[right].size)) {
c = 1;
} else if (current.size <= 1e-10) {
c = -1;
}
constraints[left][right] = constraints[right][left] = c;
});
return {distances: distances, constraints: constraints};
}
/// computes the gradient and loss simulatenously for our constrained MDS optimizer
function constrainedMDSGradient(x, fxprime, distances, constraints) {
var loss = 0, i;
for (i = 0; i < fxprime.length; ++i) {
fxprime[i] = 0;
}
for (i = 0; i < distances.length; ++i) {
var xi = x[2 * i], yi = x[2 * i + 1];
for (var j = i + 1; j < distances.length; ++j) {
var xj = x[2 * j], yj = x[2 * j + 1],
dij = distances[i][j],
constraint = constraints[i][j];
var squaredDistance = (xj - xi) * (xj - xi) + (yj - yi) * (yj - yi),
distance = Math.sqrt(squaredDistance),
delta = squaredDistance - dij * dij;
if (((constraint > 0) && (distance <= dij)) ||
((constraint < 0) && (distance >= dij))) {
continue;
}
loss += 2 * delta * delta;
fxprime[2*i] += 4 * delta * (xi - xj);
fxprime[2*i + 1] += 4 * delta * (yi - yj);
fxprime[2*j] += 4 * delta * (xj - xi);
fxprime[2*j + 1] += 4 * delta * (yj - yi);
}
}
return loss;
}
/// takes the best working variant of either constrained MDS or greedy
export function bestInitialLayout(areas, params) {
var initial = greedyLayout(areas, params);
var loss = params.lossFunction || lossFunction;
// greedylayout is sufficient for all 2/3 circle cases. try out
// constrained MDS for higher order problems, take its output
// if it outperforms. (greedy is aesthetically better on 2/3 circles
// since it axis aligns)
if (areas.length >= 8) {
var constrained = constrainedMDSLayout(areas, params),
constrainedLoss = loss(constrained, areas),
greedyLoss = loss(initial, areas);
if (constrainedLoss + 1e-8 < greedyLoss) {
initial = constrained;
}
}
return initial;
}
/// use the constrained MDS variant to generate an initial layout
export function constrainedMDSLayout(areas, params) {
params = params || {};
var restarts = params.restarts || 10;
// bidirectionally map sets to a rowid (so we can create a matrix)
var sets = [], setids = {}, i;
for (i = 0; i < areas.length; ++i ) {
var area = areas[i];
if (area.sets.length == 1) {
setids[area.sets[0]] = sets.length;
sets.push(area);
}
}
var matrices = getDistanceMatrices(areas, sets, setids),
distances = matrices.distances,
constraints = matrices.constraints;
// keep distances bounded, things get messed up otherwise.
// TODO: proper preconditioner?
var norm = norm2(distances.map(norm2))/(distances.length);
distances = distances.map(function (row) {
return row.map(function (value) { return value / norm; });});
var obj = function(x, fxprime) {
return constrainedMDSGradient(x, fxprime, distances, constraints);
};
var best, current;
for (i = 0; i < restarts; ++i) {
var initial = zeros(distances.length*2).map(Math.random);
current = conjugateGradient(obj, initial, params);
if (!best || (current.fx < best.fx)) {
best = current;
}
}
var positions = best.x;
// translate rows back to (x,y,radius) coordinates
var circles = {};
for (i = 0; i < sets.length; ++i) {
var set = sets[i];
circles[set.sets[0]] = {
x: positions[2*i] * norm,
y: positions[2*i + 1] * norm,
radius: Math.sqrt(set.size / Math.PI)
};
}
if (params.history) {
for (i = 0; i < params.history.length; ++i) {
scale(params.history[i].x, norm);
}
}
return circles;
}
/** Lays out a Venn diagram greedily, going from most overlapped sets to
least overlapped, attempting to position each new set such that the
overlapping areas to already positioned sets are basically right */
export function greedyLayout(areas, params) {
var loss = params && params.lossFunction ? params.lossFunction : lossFunction;
// define a circle for each set
var circles = {}, setOverlaps = {}, set;
for (var i = 0; i < areas.length; ++i) {
var area = areas[i];
if (area.sets.length == 1) {
set = area.sets[0];
circles[set] = {x: 1e10, y: 1e10,
rowid: circles.length,
size: area.size,
radius: Math.sqrt(area.size / Math.PI)};
setOverlaps[set] = [];
}
}
areas = areas.filter(function(a) { return a.sets.length == 2; });
// map each set to a list of all the other sets that overlap it
for (i = 0; i < areas.length; ++i) {
var current = areas[i];
var weight = current.hasOwnProperty('weight') ? current.weight : 1.0;
var left = current.sets[0], right = current.sets[1];
// completely overlapped circles shouldn't be positioned early here
if (current.size + SMALL >= Math.min(circles[left].size,
circles[right].size)) {
weight = 0;
}
setOverlaps[left].push ({set:right, size:current.size, weight:weight});
setOverlaps[right].push({set:left, size:current.size, weight:weight});
}
// get list of most overlapped sets
var mostOverlapped = [];
for (set in setOverlaps) {
if (setOverlaps.hasOwnProperty(set)) {
var size = 0;
for (i = 0; i < setOverlaps[set].length; ++i) {
size += setOverlaps[set][i].size * setOverlaps[set][i].weight;
}
mostOverlapped.push({set: set, size:size});
}
}
// sort by size desc
function sortOrder(a,b) {
return b.size - a.size;
}
mostOverlapped.sort(sortOrder);
// keep track of what sets have been laid out
var positioned = {};
function isPositioned(element) {
return element.set in positioned;
}
// adds a point to the output
function positionSet(point, index) {
circles[index].x = point.x;
circles[index].y = point.y;
positioned[index] = true;
}
// add most overlapped set at (0,0)
positionSet({x: 0, y: 0}, mostOverlapped[0].set);
// get distances between all points. TODO, necessary?
// answer: probably not
// var distances = venn.getDistanceMatrices(circles, areas).distances;
for (i = 1; i < mostOverlapped.length; ++i) {
var setIndex = mostOverlapped[i].set,
overlap = setOverlaps[setIndex].filter(isPositioned);
set = circles[setIndex];
overlap.sort(sortOrder);
if (overlap.length === 0) {
// this shouldn't happen anymore with addMissingAreas
throw "ERROR: missing pairwise overlap information";
}
var points = [];
for (var j = 0; j < overlap.length; ++j) {
// get appropriate distance from most overlapped already added set
var p1 = circles[overlap[j].set],
d1 = distanceFromIntersectArea(set.radius, p1.radius,
overlap[j].size);
// sample positions at 90 degrees for maximum aesthetics
points.push({x : p1.x + d1, y : p1.y});
points.push({x : p1.x - d1, y : p1.y});
points.push({y : p1.y + d1, x : p1.x});
points.push({y : p1.y - d1, x : p1.x});
// if we have at least 2 overlaps, then figure out where the
// set should be positioned analytically and try those too
for (var k = j + 1; k < overlap.length; ++k) {
var p2 = circles[overlap[k].set],
d2 = distanceFromIntersectArea(set.radius, p2.radius,
overlap[k].size);
var extraPoints = circleCircleIntersection(
{ x: p1.x, y: p1.y, radius: d1},
{ x: p2.x, y: p2.y, radius: d2});
for (var l = 0; l < extraPoints.length; ++l) {
points.push(extraPoints[l]);
}
}
}
// we have some candidate positions for the set, examine loss
// at each position to figure out where to put it at
var bestLoss = 1e50, bestPoint = points[0];
for (j = 0; j < points.length; ++j) {
circles[setIndex].x = points[j].x;
circles[setIndex].y = points[j].y;
var localLoss = loss(circles, areas);
if (localLoss < bestLoss) {
bestLoss = localLoss;
bestPoint = points[j];
}
}
positionSet(bestPoint, setIndex);
}
return circles;
}
/** Given a bunch of sets, and the desired overlaps between these sets - computes
the distance from the actual overlaps to the desired overlaps. Note that
this method ignores overlaps of more than 2 circles */
export function lossFunction(sets, overlaps) {
var output = 0;
function getCircles(indices) {
return indices.map(function(i) { return sets[i]; });
}
for (var i = 0; i < overlaps.length; ++i) {
var area = overlaps[i], overlap;
if (area.sets.length == 1) {
continue;
} else if (area.sets.length == 2) {
var left = sets[area.sets[0]],
right = sets[area.sets[1]];
overlap = circleOverlap(left.radius, right.radius,
distance(left, right));
} else {
overlap = intersectionArea(getCircles(area.sets));
}
var weight = area.hasOwnProperty('weight') ? area.weight : 1.0;
output += weight * (overlap - area.size) * (overlap - area.size);
}
return output;
}
// orientates a bunch of circles to point in orientation
function orientateCircles(circles, orientation, orientationOrder) {
if (orientationOrder === null) {
circles.sort(function (a, b) { return b.radius - a.radius; });
} else {
circles.sort(orientationOrder);
}
var i;
// shift circles so largest circle is at (0, 0)
if (circles.length > 0) {
var largestX = circles[0].x,
largestY = circles[0].y;
for (i = 0; i < circles.length; ++i) {
circles[i].x -= largestX;
circles[i].y -= largestY;
}
}
if (circles.length == 2) {
// if the second circle is a subset of the first, arrange so that
// it is off to one side. hack for https://github.com/benfred/venn.js/issues/120
var dist = distance(circles[0], circles[1]);
if (dist < Math.abs(circles[1].radius - circles[0].radius)) {
circles[1].x = circles[0].x + circles[0].radius - circles[1].radius - 1e-10;
circles[1].y = circles[0].y;
}
}
// rotate circles so that second largest is at an angle of 'orientation'
// from largest
if (circles.length > 1) {
var rotation = Math.atan2(circles[1].x, circles[1].y) - orientation,
c = Math.cos(rotation),
s = Math.sin(rotation), x, y;
for (i = 0; i < circles.length; ++i) {
x = circles[i].x;
y = circles[i].y;
circles[i].x = c * x - s * y;
circles[i].y = s * x + c * y;
}
}
// mirror solution if third solution is above plane specified by
// first two circles
if (circles.length > 2) {
var angle = Math.atan2(circles[2].x, circles[2].y) - orientation;
while (angle < 0) { angle += 2* Math.PI; }
while (angle > 2*Math.PI) { angle -= 2* Math.PI; }
if (angle > Math.PI) {
var slope = circles[1].y / (1e-10 + circles[1].x);
for (i = 0; i < circles.length; ++i) {
var d = (circles[i].x + slope * circles[i].y) / (1 + slope*slope);
circles[i].x = 2 * d - circles[i].x;
circles[i].y = 2 * d * slope - circles[i].y;
}
}
}
}
export function disjointCluster(circles) {
// union-find clustering to get disjoint sets
circles.map(function(circle) { circle.parent = circle; });
// path compression step in union find
function find(circle) {
if (circle.parent !== circle) {
circle.parent = find(circle.parent);
}
return circle.parent;
}
function union(x, y) {
var xRoot = find(x), yRoot = find(y);
xRoot.parent = yRoot;
}
// get the union of all overlapping sets
for (var i = 0; i < circles.length; ++i) {
for (var j = i + 1; j < circles.length; ++j) {
var maxDistance = circles[i].radius + circles[j].radius;
if (distance(circles[i], circles[j]) + 1e-10 < maxDistance) {
union(circles[j], circles[i]);
}
}
}
// find all the disjoint clusters and group them together
var disjointClusters = {}, setid;
for (i = 0; i < circles.length; ++i) {
setid = find(circles[i]).parent.setid;
if (!(setid in disjointClusters)) {
disjointClusters[setid] = [];
}
disjointClusters[setid].push(circles[i]);
}
// cleanup bookkeeping
circles.map(function(circle) { delete circle.parent; });
// return in more usable form
var ret = [];
for (setid in disjointClusters) {
if (disjointClusters.hasOwnProperty(setid)) {
ret.push(disjointClusters[setid]);
}
}
return ret;
}
function getBoundingBox(circles) {
var minMax = function(d) {
var hi = Math.max.apply(null, circles.map(
function(c) { return c[d] + c.radius; } )),
lo = Math.min.apply(null, circles.map(
function(c) { return c[d] - c.radius;} ));
return {max:hi, min:lo};
};
return {xRange: minMax('x'), yRange: minMax('y')};
}
export function normalizeSolution(solution, orientation, orientationOrder) {
if (orientation === null){
orientation = Math.PI/2;
}
// work with a list instead of a dictionary, and take a copy so we
// don't mutate input
var circles = [], i, setid;
for (setid in solution) {
if (solution.hasOwnProperty(setid)) {
var previous = solution[setid];
circles.push({x: previous.x,
y: previous.y,
radius: previous.radius,
setid: setid});
}
}
// get all the disjoint clusters
var clusters = disjointCluster(circles);
// orientate all disjoint sets, get sizes
for (i = 0; i < clusters.length; ++i) {
orientateCircles(clusters[i], orientation, orientationOrder);
var bounds = getBoundingBox(clusters[i]);
clusters[i].size = (bounds.xRange.max - bounds.xRange.min) * (bounds.yRange.max - bounds.yRange.min);
clusters[i].bounds = bounds;
}
clusters.sort(function(a, b) { return b.size - a.size; });
// orientate the largest at 0,0, and get the bounds
circles = clusters[0];
var returnBounds = circles.bounds;
var spacing = (returnBounds.xRange.max - returnBounds.xRange.min)/50;
function addCluster(cluster, right, bottom) {
if (!cluster) return;
var bounds = cluster.bounds, xOffset, yOffset, centreing;
if (right) {
xOffset = returnBounds.xRange.max - bounds.xRange.min + spacing;
} else {
xOffset = returnBounds.xRange.max - bounds.xRange.max;
centreing = (bounds.xRange.max - bounds.xRange.min) / 2 -
(returnBounds.xRange.max - returnBounds.xRange.min) / 2;
if (centreing < 0) xOffset += centreing;
}
if (bottom) {
yOffset = returnBounds.yRange.max - bounds.yRange.min + spacing;
} else {
yOffset = returnBounds.yRange.max - bounds.yRange.max;
centreing = (bounds.yRange.max - bounds.yRange.min) / 2 -
(returnBounds.yRange.max - returnBounds.yRange.min) / 2;
if (centreing < 0) yOffset += centreing;
}
for (var j = 0; j < cluster.length; ++j) {
cluster[j].x += xOffset;
cluster[j].y += yOffset;
circles.push(cluster[j]);
}
}
var index = 1;
while (index < clusters.length) {
addCluster(clusters[index], true, false);
addCluster(clusters[index+1], false, true);
addCluster(clusters[index+2], true, true);
index += 3;
// have one cluster (in top left). lay out next three relative
// to it in a grid
returnBounds = getBoundingBox(circles);
}
// convert back to solution form
var ret = {};
for (i = 0; i < circles.length; ++i) {
ret[circles[i].setid] = circles[i];
}
return ret;
}
/** Scales a solution from venn.venn or venn.greedyLayout such that it fits in
a rectangle of width/height - with padding around the borders. also
centers the diagram in the available space at the same time */
export function scaleSolution(solution, width, height, padding) {
var circles = [], setids = [];
for (var setid in solution) {
if (solution.hasOwnProperty(setid)) {
setids.push(setid);
circles.push(solution[setid]);
}
}
width -= 2*padding;
height -= 2*padding;
var bounds = getBoundingBox(circles),
xRange = bounds.xRange,
yRange = bounds.yRange;
if ((xRange.max == xRange.min) ||
(yRange.max == yRange.min)) {
console.log("not scaling solution: zero size detected");
return solution;
}
var xScaling = width / (xRange.max - xRange.min),
yScaling = height / (yRange.max - yRange.min),
scaling = Math.min(yScaling, xScaling),
// while we're at it, center the diagram too
xOffset = (width - (xRange.max - xRange.min) * scaling) / 2,
yOffset = (height - (yRange.max - yRange.min) * scaling) / 2;
var scaled = {};
for (var i = 0; i < circles.length; ++i) {
var circle = circles[i];
scaled[setids[i]] = {
radius: scaling * circle.radius,
x: padding + xOffset + (circle.x - xRange.min) * scaling,
y: padding + yOffset + (circle.y - yRange.min) * scaling,
};
}
return scaled;
}