vector-chunk
Version:
🚀 Next-Gen Content Intelligence - The most powerful, lightweight, and intelligent vector search package for modern applications. Zero dependencies, AI-powered search, real-time processing, content analysis, tone detection, style matching, DNA fingerprint
266 lines (204 loc) • 9.3 kB
Markdown
# 🚀 Vector Search Pro - Next-Gen Content Intelligence
> **The most powerful, lightweight, and intelligent vector search package for modern applications**
[](https://badge.fury.io/js/vector-chunk)
[](https://opensource.org/licenses/MIT)
[](https://www.typescriptlang.org/)
[](https://www.npmjs.com/package/vector-chunk)
## ✨ What's New in v2.0.1
- 🧠 **Content Intelligence Engine**: Analyze content tone, style, and generate DNA fingerprints
- 🎯 **Tone Detection**: Automatically detect professional, casual, technical, formal, and conversational tones
- 🎨 **Style Analysis**: Analyze writing style, readability, and complexity
- 🧬 **Content DNA**: Generate unique content fingerprints and relationship maps
- 🔗 **Content Fusion**: Combine multiple sources into coherent summaries with conflict detection
- ⚡ **Adaptive Optimization**: Self-optimizing chunk sizes and search algorithms
- 📊 **Performance Analytics**: Real-time performance tracking and optimization recommendations
## 🚀 Quick Start
```bash
npm install vector-chunk
```
```typescript
import { VectorSearch } from 'vector-chunk';
// Initialize with all intelligent features
const searchEngine = new VectorSearch();
// Basic search (your original function)
const results = await searchEngine.searchContent(
"Your document content here...",
"search term"
);
// Content analysis
const analysis = await searchEngine.analyzeContent("Your content here");
// Multi-source fusion
const fusion = await searchEngine.fuseContent([
"Source 1 content...",
"Source 2 content...",
"Source 3 content..."
]);
```
## 🎯 How to Use All Functions
### 1. **Content Analysis & Tone Detection**
```typescript
const analysis = await searchEngine.analyzeContent(content);
// What you get:
// - Tone: professional/casual/technical/formal/conversational with confidence
// - Style: sentence length, vocabulary complexity, readability score
// - DNA: semantic signature, complexity, coherence
// - Summary: auto-generated content summary
// - Keywords: extracted important terms
// - Quality score: overall content quality assessment
// - Insights: actionable recommendations
```
**Use Cases**: Content marketing, document quality assessment, writing style analysis, tone consistency checking
### 2. **Content Fusion & Multi-source Summarization**
```typescript
const fusion = await searchEngine.fuseContent([source1, source2, source3]);
// What you get:
// - Coherent summary combining all sources
// - Conflict detection between sources
// - Information gaps identification
// - Source relationship mapping
// - Coherence scoring
```
**Use Cases**: Research paper synthesis, multi-document summarization, content aggregation, fact-checking
### 3. **Adaptive Performance Optimization**
```typescript
// Record performance metrics
searchEngine.recordPerformanceMetrics({
searchTime: 45,
chunkSize: 512,
memoryUsage: 2.5,
accuracy: 0.85
});
// Get optimization recommendations
const recommendations = searchEngine.getOptimizationRecommendations();
// Get performance analytics
const analytics = searchEngine.getPerformanceAnalytics();
```
**Use Cases**: Production system optimization, performance monitoring, automatic tuning, scalability improvement
### 4. **Advanced Search with Intelligence**
```typescript
// Search with content understanding
const results = await searchEngine.searchContent(content, query);
// Get fusion insights
const insights = searchEngine.getFusionInsights(fusion);
// Update configurations dynamically
searchEngine.updateOptimizationConfig({ learningRate: 0.15 });
```
**Use Cases**: Intelligent document search, content recommendation, similarity matching, knowledge discovery
## 🔧 Configuration Options
```typescript
const searchEngine = new VectorSearch(
// Search configuration
{
similarityMetric: 'cosine',
maxResults: 10,
threshold: 0.0
},
// Optimization configuration
{
enableAutoOptimization: true,
learningRate: 0.1,
performanceThreshold: 0.8
},
// Adaptive configuration
{
enableLearning: true,
optimizationStrategy: 'balanced'
}
);
```
## 📊 Performance Features
- **Zero Dependencies**: Pure JavaScript/TypeScript implementation
- **Self-Optimizing**: Automatically tunes parameters based on usage
- **Real-time Analytics**: Continuous performance monitoring
- **Adaptive Learning**: Improves over time with usage patterns
- **Memory Efficient**: Optimized for large document collections
## 🌟 Unique Capabilities
### **Content Intelligence**
- **Tone Detection**: Understand content mood and style
- **Style Matching**: Find content with similar writing characteristics
- **DNA Fingerprinting**: Generate unique content signatures
- **Quality Assessment**: Score content readability and complexity
### **Smart Processing**
- **Conflict Detection**: Identify contradictions between sources
- **Gap Analysis**: Find missing information across documents
- **Relationship Mapping**: Discover connections between content pieces
- **Coherence Scoring**: Measure how well content flows together
### **Adaptive Optimization**
- **Self-Tuning**: Automatically optimize chunk sizes and search parameters
- **Performance Learning**: Learn from usage patterns to improve efficiency
- **Predictive Optimization**: Anticipate and prevent performance issues
- **Dynamic Configuration**: Update settings without restarting
## 🎯 Perfect For
- **Content Management Systems**: Intelligent document organization and search
- **E-commerce Platforms**: Smart product search and recommendation engines
- **Knowledge Bases**: Instant answers from large document collections
- **Research Tools**: Academic paper analysis and discovery
- **Legal Systems**: Contract and policy search with conflict detection
- **Marketing Platforms**: Content tone analysis and style optimization
- **Educational Platforms**: Content quality assessment and improvement
- **Enterprise Search**: Intelligent document discovery and relationship mapping
## 🚀 Getting Started
### **Installation**
```bash
npm install vector-chunk
```
### **Basic Usage**
```typescript
import { VectorSearch } from 'vector-chunk';
const searchEngine = new VectorSearch();
// Your original search function
const results = await searchEngine.searchContent(
"Your document content...",
"search term"
);
```
### **Advanced Usage**
```typescript
// Content analysis
const analysis = await searchEngine.analyzeContent(content);
console.log(`Tone: ${analysis.tone.dominantTone}`);
console.log(`Quality: ${(analysis.qualityScore * 100).toFixed(1)}%`);
// Multi-source fusion
const fusion = await searchEngine.fuseContent(sources);
console.log(`Summary: ${fusion.summary}`);
console.log(`Conflicts: ${fusion.conflicts.length}`);
// Performance optimization
searchEngine.recordPerformanceMetrics(metrics);
const recommendations = searchEngine.getOptimizationRecommendations();
```
## 🔧 Configuration Options
### **Search Configuration**
- `similarityMetric`: Similarity algorithm (cosine)
- `maxResults`: Maximum results to return
- `threshold`: Minimum similarity threshold
### **Optimization Configuration**
- `enableAutoOptimization`: Enable automatic optimization
- `learningRate`: How fast to adapt (0.1 = 10% per iteration)
- `performanceThreshold`: Target performance level
- `optimizationInterval`: How often to optimize
### **Adaptive Configuration**
- `enableLearning`: Enable learning from usage patterns
- `performanceTracking`: Track performance metrics
- `autoTuning`: Automatically tune parameters
- `optimizationStrategy`: aggressive/balanced/conservative
## 📈 Performance Tips
1. **Start with defaults**: The package is pre-optimized for most use cases
2. **Monitor performance**: Use built-in analytics to track improvements
3. **Let it learn**: Performance improves automatically over time
4. **Batch operations**: Process multiple documents together for better efficiency
5. **Use insights**: Follow recommendations from the optimization engine
## 🤝 Contributing
We welcome contributions! Please see our contributing guidelines for details.
## 📄 License
MIT License - see LICENSE file for details.
## 🙏 Acknowledgements
- Built with pure JavaScript/TypeScript
- No external dependencies or AI services
- All algorithms are free and license-secure
- Designed for enterprise-scale applications
## 💬 Support
- **Documentation**: Comprehensive examples and API reference
- **Issues**: Report bugs and request features on GitHub
- **Community**: Join discussions and share use cases
---
**Vector Search Pro** - Where content meets intelligence, powered by zero dependencies and unlimited possibilities! 🚀✨