UNPKG

vector-chunk

Version:

🚀 Next-Gen Content Intelligence - The most powerful, lightweight, and intelligent vector search package for modern applications. Zero dependencies, AI-powered search, real-time processing, content analysis, tone detection, style matching, DNA fingerprint

266 lines (204 loc) 9.3 kB
# 🚀 Vector Search Pro - Next-Gen Content Intelligence > **The most powerful, lightweight, and intelligent vector search package for modern applications** [![npm version](https://badge.fury.io/js/vector-chunk.svg)](https://badge.fury.io/js/vector-chunk) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![TypeScript](https://img.shields.io/badge/TypeScript-007ACC?style=flat&logo=typescript&logoColor=white)](https://www.typescriptlang.org/) [![Zero Dependencies](https://img.shields.io/badge/Zero%20Dependencies-100%25-green)](https://www.npmjs.com/package/vector-chunk) ## ✨ What's New in v2.0.1 - 🧠 **Content Intelligence Engine**: Analyze content tone, style, and generate DNA fingerprints - 🎯 **Tone Detection**: Automatically detect professional, casual, technical, formal, and conversational tones - 🎨 **Style Analysis**: Analyze writing style, readability, and complexity - 🧬 **Content DNA**: Generate unique content fingerprints and relationship maps - 🔗 **Content Fusion**: Combine multiple sources into coherent summaries with conflict detection -**Adaptive Optimization**: Self-optimizing chunk sizes and search algorithms - 📊 **Performance Analytics**: Real-time performance tracking and optimization recommendations ## 🚀 Quick Start ```bash npm install vector-chunk ``` ```typescript import { VectorSearch } from 'vector-chunk'; // Initialize with all intelligent features const searchEngine = new VectorSearch(); // Basic search (your original function) const results = await searchEngine.searchContent( "Your document content here...", "search term" ); // Content analysis const analysis = await searchEngine.analyzeContent("Your content here"); // Multi-source fusion const fusion = await searchEngine.fuseContent([ "Source 1 content...", "Source 2 content...", "Source 3 content..." ]); ``` ## 🎯 How to Use All Functions ### 1. **Content Analysis & Tone Detection** ```typescript const analysis = await searchEngine.analyzeContent(content); // What you get: // - Tone: professional/casual/technical/formal/conversational with confidence // - Style: sentence length, vocabulary complexity, readability score // - DNA: semantic signature, complexity, coherence // - Summary: auto-generated content summary // - Keywords: extracted important terms // - Quality score: overall content quality assessment // - Insights: actionable recommendations ``` **Use Cases**: Content marketing, document quality assessment, writing style analysis, tone consistency checking ### 2. **Content Fusion & Multi-source Summarization** ```typescript const fusion = await searchEngine.fuseContent([source1, source2, source3]); // What you get: // - Coherent summary combining all sources // - Conflict detection between sources // - Information gaps identification // - Source relationship mapping // - Coherence scoring ``` **Use Cases**: Research paper synthesis, multi-document summarization, content aggregation, fact-checking ### 3. **Adaptive Performance Optimization** ```typescript // Record performance metrics searchEngine.recordPerformanceMetrics({ searchTime: 45, chunkSize: 512, memoryUsage: 2.5, accuracy: 0.85 }); // Get optimization recommendations const recommendations = searchEngine.getOptimizationRecommendations(); // Get performance analytics const analytics = searchEngine.getPerformanceAnalytics(); ``` **Use Cases**: Production system optimization, performance monitoring, automatic tuning, scalability improvement ### 4. **Advanced Search with Intelligence** ```typescript // Search with content understanding const results = await searchEngine.searchContent(content, query); // Get fusion insights const insights = searchEngine.getFusionInsights(fusion); // Update configurations dynamically searchEngine.updateOptimizationConfig({ learningRate: 0.15 }); ``` **Use Cases**: Intelligent document search, content recommendation, similarity matching, knowledge discovery ## 🔧 Configuration Options ```typescript const searchEngine = new VectorSearch( // Search configuration { similarityMetric: 'cosine', maxResults: 10, threshold: 0.0 }, // Optimization configuration { enableAutoOptimization: true, learningRate: 0.1, performanceThreshold: 0.8 }, // Adaptive configuration { enableLearning: true, optimizationStrategy: 'balanced' } ); ``` ## 📊 Performance Features - **Zero Dependencies**: Pure JavaScript/TypeScript implementation - **Self-Optimizing**: Automatically tunes parameters based on usage - **Real-time Analytics**: Continuous performance monitoring - **Adaptive Learning**: Improves over time with usage patterns - **Memory Efficient**: Optimized for large document collections ## 🌟 Unique Capabilities ### **Content Intelligence** - **Tone Detection**: Understand content mood and style - **Style Matching**: Find content with similar writing characteristics - **DNA Fingerprinting**: Generate unique content signatures - **Quality Assessment**: Score content readability and complexity ### **Smart Processing** - **Conflict Detection**: Identify contradictions between sources - **Gap Analysis**: Find missing information across documents - **Relationship Mapping**: Discover connections between content pieces - **Coherence Scoring**: Measure how well content flows together ### **Adaptive Optimization** - **Self-Tuning**: Automatically optimize chunk sizes and search parameters - **Performance Learning**: Learn from usage patterns to improve efficiency - **Predictive Optimization**: Anticipate and prevent performance issues - **Dynamic Configuration**: Update settings without restarting ## 🎯 Perfect For - **Content Management Systems**: Intelligent document organization and search - **E-commerce Platforms**: Smart product search and recommendation engines - **Knowledge Bases**: Instant answers from large document collections - **Research Tools**: Academic paper analysis and discovery - **Legal Systems**: Contract and policy search with conflict detection - **Marketing Platforms**: Content tone analysis and style optimization - **Educational Platforms**: Content quality assessment and improvement - **Enterprise Search**: Intelligent document discovery and relationship mapping ## 🚀 Getting Started ### **Installation** ```bash npm install vector-chunk ``` ### **Basic Usage** ```typescript import { VectorSearch } from 'vector-chunk'; const searchEngine = new VectorSearch(); // Your original search function const results = await searchEngine.searchContent( "Your document content...", "search term" ); ``` ### **Advanced Usage** ```typescript // Content analysis const analysis = await searchEngine.analyzeContent(content); console.log(`Tone: ${analysis.tone.dominantTone}`); console.log(`Quality: ${(analysis.qualityScore * 100).toFixed(1)}%`); // Multi-source fusion const fusion = await searchEngine.fuseContent(sources); console.log(`Summary: ${fusion.summary}`); console.log(`Conflicts: ${fusion.conflicts.length}`); // Performance optimization searchEngine.recordPerformanceMetrics(metrics); const recommendations = searchEngine.getOptimizationRecommendations(); ``` ## 🔧 Configuration Options ### **Search Configuration** - `similarityMetric`: Similarity algorithm (cosine) - `maxResults`: Maximum results to return - `threshold`: Minimum similarity threshold ### **Optimization Configuration** - `enableAutoOptimization`: Enable automatic optimization - `learningRate`: How fast to adapt (0.1 = 10% per iteration) - `performanceThreshold`: Target performance level - `optimizationInterval`: How often to optimize ### **Adaptive Configuration** - `enableLearning`: Enable learning from usage patterns - `performanceTracking`: Track performance metrics - `autoTuning`: Automatically tune parameters - `optimizationStrategy`: aggressive/balanced/conservative ## 📈 Performance Tips 1. **Start with defaults**: The package is pre-optimized for most use cases 2. **Monitor performance**: Use built-in analytics to track improvements 3. **Let it learn**: Performance improves automatically over time 4. **Batch operations**: Process multiple documents together for better efficiency 5. **Use insights**: Follow recommendations from the optimization engine ## 🤝 Contributing We welcome contributions! Please see our contributing guidelines for details. ## 📄 License MIT License - see LICENSE file for details. ## 🙏 Acknowledgements - Built with pure JavaScript/TypeScript - No external dependencies or AI services - All algorithms are free and license-secure - Designed for enterprise-scale applications ## 💬 Support - **Documentation**: Comprehensive examples and API reference - **Issues**: Report bugs and request features on GitHub - **Community**: Join discussions and share use cases --- **Vector Search Pro** - Where content meets intelligence, powered by zero dependencies and unlimited possibilities! 🚀✨