UNPKG

vanta

Version:

3D animated backgrounds for your website

329 lines (279 loc) 11.3 kB
import ShaderBase, {VANTA} from './_shaderBase.js' const win = typeof window == 'object' let THREE = win && window.THREE class Halo extends ShaderBase { getDefaultOptions() { return { baseColor: 0x001a59, color2: 0xf2e735, backgroundColor: 0x131a43, amplitudeFactor: 1.0, ringFactor: 1.0, rotationFactor: 1.0, xOffset: 0, yOffset: 0, size: 1.0, speed: 1.0, mouseEase: true, // scaleMobile: window.devicePixelRatio, // scale: window.devicePixelRatio, scaleMobile: 1, scale: 1, } } onInit() { const pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBFormat } const ww = this.width * window.devicePixelRatio / this.scale const hh = this.height * window.devicePixelRatio / this.scale this.bufferTarget = new THREE.WebGLRenderTarget( ww, hh, pars ) this.bufferFeedback = new THREE.WebGLRenderTarget( ww, hh, pars ) } initBasicShader(fragmentShader, vertexShader) { super.initBasicShader(fragmentShader, vertexShader) this.uniforms.iBuffer = { type: 't', value: this.bufferTarget.texture, } } onUpdate() { this.uniforms.iBuffer.value = this.bufferFeedback.texture const renderer = this.renderer renderer.setRenderTarget( this.bufferTarget ) // renderer.clear() renderer.render( this.scene, this.camera ) renderer.setRenderTarget( null ) renderer.clear() // Swap, to prevent shader using the same input as output let temp = this.bufferTarget this.bufferTarget = this.bufferFeedback this.bufferFeedback = temp } onResize() { if (this.bufferTarget) { const ww = this.width * window.devicePixelRatio / this.scale const hh = this.height * window.devicePixelRatio / this.scale this.bufferTarget.setSize( ww, hh ) this.bufferFeedback.setSize( ww, hh ) } } onDestroy() { this.bufferTarget = null this.bufferFeedback = null } } export default VANTA.register('HALO', Halo) Halo.prototype.fragmentShader = `\ uniform vec2 iResolution; uniform float iDpr; uniform vec2 iMouse; uniform float iTime; uniform float xOffset; uniform float yOffset; uniform vec3 baseColor; uniform vec3 color2; uniform vec3 backgroundColor; uniform float size; uniform float shape; uniform float ringFactor; uniform float rotationFactor; uniform float amplitudeFactor; uniform sampler2D iBuffer; uniform sampler2D iTex; const float PI = 3.14159265359; // float length2(vec2 p) { return dot(p, p); } // float noise(vec2 p){ // return fract(sin(fract(sin(p.x) * (43.13311)) + p.y) * 31.0011); // } // float worley(vec2 p) { // float d = 1e30; // for (int xo = -1; xo <= 1; ++xo) { // for (int yo = -1; yo <= 1; ++yo) { // vec2 tp = floor(p) + vec2(xo, yo); // d = min(d, length2(p - tp - vec2(noise(tp)))); // } // } // vec2 uv = gl_FragCoord.xy / iResolution.xy; // float timeOffset = 0.15 * sin(iTime * 2.0 + 10.0*(uv.x - uv.y)); // return 3.0*exp(-4.0*abs(2.0*d - 1.0 + timeOffset)); // } // float fworley(vec2 p) { // return sqrt( // 1.1 * // light // worley(p*10. + .3 + iTime*.0525) * // sqrt(worley(p * 50. / size + 0.1 + iTime * -0.75)) * // 4.1 * // sqrt(sqrt(worley(p * -1. + 9.3)))); // } vec4 j2hue(float c) { return .5+.5*cos(6.28*c+vec4(0,-2.1,2.1,0)); } vec3 permute(vec3 x) { return mod(((x*34.0)+1.0)*x, 289.0); } float snoise(vec2 v){ const vec4 C = vec4(0.211324865405187, 0.366025403784439, -0.577350269189626, 0.024390243902439); vec2 i = floor(v + dot(v, C.yy) ); vec2 x0 = v - i + dot(i, C.xx); vec2 i1; i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); vec4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; i = mod(i, 289.0); vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 )) + i.x + vec3(0.0, i1.x, 1.0 )); vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0); m = m*m ; m = m*m ; vec3 x = 2.0 * fract(p * C.www) - 1.0; vec3 h = abs(x) - 0.5; vec3 ox = floor(x + 0.5); vec3 a0 = x - ox; m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h ); vec3 g; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * x12.xz + h.yz * x12.yw; return 130.0 * dot(m, g); } vec2 sincos( float x ){return vec2(sin(x), cos(x));} vec2 rotate2d(vec2 uv, float phi){vec2 t = sincos(phi); return vec2(uv.x*t.y-uv.y*t.x, uv.x*t.x+uv.y*t.y);} vec3 rotate3d(vec3 p, vec3 v, float phi){ v = normalize(v); vec2 t = sincos(-phi); float s = t.x, c = t.y, x =-v.x, y =-v.y, z =-v.z; mat4 M = mat4(x*x*(1.-c)+c,x*y*(1.-c)-z*s,x*z*(1.-c)+y*s,0.,y*x*(1.-c)+z*s,y*y*(1.-c)+c,y*z*(1.-c)-x*s,0.,z*x*(1.-c)-y*s,z*y*(1.-c)+x*s,z*z*(1.-c)+c,0.,0.,0.,0.,1.);return (vec4(p,1.)*M).xyz;} // Classic Perlin 3D Noise // by Stefan Gustavson vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);} vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;} vec3 fade(vec3 t) {return t*t*t*(t*(t*6.0-15.0)+10.0);} float p3d(vec3 P){ vec3 Pi0 = floor(P); // Integer part for indexing vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1 Pi0 = mod(Pi0, 289.0); Pi1 = mod(Pi1, 289.0); vec3 Pf0 = fract(P); // Fractional part for interpolation vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0 vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); vec4 iy = vec4(Pi0.yy, Pi1.yy); vec4 iz0 = Pi0.zzzz; vec4 iz1 = Pi1.zzzz; vec4 ixy = permute(permute(ix) + iy); vec4 ixy0 = permute(ixy + iz0); vec4 ixy1 = permute(ixy + iz1); vec4 gx0 = ixy0 / 7.0; vec4 gy0 = fract(floor(gx0) / 7.0) - 0.5; gx0 = fract(gx0); vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0); vec4 sz0 = step(gz0, vec4(0.0)); gx0 -= sz0 * (step(0.0, gx0) - 0.5); gy0 -= sz0 * (step(0.0, gy0) - 0.5); vec4 gx1 = ixy1 / 7.0; vec4 gy1 = fract(floor(gx1) / 7.0) - 0.5; gx1 = fract(gx1); vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1); vec4 sz1 = step(gz1, vec4(0.0)); gx1 -= sz1 * (step(0.0, gx1) - 0.5); gy1 -= sz1 * (step(0.0, gy1) - 0.5); vec3 g000 = vec3(gx0.x,gy0.x,gz0.x); vec3 g100 = vec3(gx0.y,gy0.y,gz0.y); vec3 g010 = vec3(gx0.z,gy0.z,gz0.z); vec3 g110 = vec3(gx0.w,gy0.w,gz0.w); vec3 g001 = vec3(gx1.x,gy1.x,gz1.x); vec3 g101 = vec3(gx1.y,gy1.y,gz1.y); vec3 g011 = vec3(gx1.z,gy1.z,gz1.z); vec3 g111 = vec3(gx1.w,gy1.w,gz1.w); vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; float n000 = dot(g000, Pf0); float n100 = dot(g100, vec3(Pf1.x, Pf0.yz)); float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z)); float n110 = dot(g110, vec3(Pf1.xy, Pf0.z)); float n001 = dot(g001, vec3(Pf0.xy, Pf1.z)); float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z)); float n011 = dot(g011, vec3(Pf0.x, Pf1.yz)); float n111 = dot(g111, Pf1); vec3 fade_xyz = fade(Pf0); vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z); vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y); float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return 2.2 * n_xyz; } void main() { vec2 res2 = iResolution.xy * iDpr; vec2 pixel = vec2(gl_FragCoord.xy - 0.5 * res2) / res2.y; // center-origin pixel coord pixel.x -= xOffset * res2.x / res2.y; pixel.y -= yOffset; vec2 uv = gl_FragCoord.xy / res2; // 0 to 1 // float nn1 = snoise(uv * 0.25 + iTime * 0.005 + mixedColor.b * 0.01) * 0.1; // float nn2 = snoise(uv * 0.25 + iTime * 0.005 + mixedColor.b * 0.01 + 1000.) * 0.1; // uv += vec2(nn1, nn2); // PERLIN DISTORTION // float noiseScale = 10.; // float timeScale = 0.5; // uv += vec2( p3d(vec3(uv * noiseScale, iTime * timeScale)), p3d(vec3(1000. + uv * noiseScale , iTime * timeScale)) ) * 0.001; // uv = rotate2d(uv, 0.001); // pixel = rotate2d(pixel, 0.001); vec2 mouse2 = (iMouse * iDpr / res2 - 0.5) * vec2(1.,-1.); vec2 uvBig = (uv - 0.5) * 0.996 + 0.5; vec4 oldImage = texture2D(iBuffer, uv); vec3 mixedColor = oldImage.rgb - backgroundColor; // float spinDist = 0.002 + 0.002 * sin(iTime * 0.4); float cropDist = 0.01; float cropXOffset = 0.2; float cropYOffset = 0.2; // float cropXOffset = 0.4 + 0.1 * sin(iTime * 0.4); // float cropYOffset = 0.4 + 0.1 * cos(iTime * 0.6); vec2 offset = uv + vec2((mixedColor.g - cropXOffset) * cropDist, (mixedColor.r - cropYOffset) * cropDist); // float nn = snoise(uv * 10.) * 0.001; // offset += nn; float spinDist = 0.001; float spinSpeed = 0.2 + 0.15 * cos(iTime * 0.5); float timeFrac = mod(iTime, 6.5); vec2 offset2 = uvBig + vec2(cos(timeFrac * spinSpeed) * spinDist, sin(timeFrac * spinSpeed) * spinDist); mixedColor = texture2D(iBuffer, offset).rgb * 0.4 + texture2D(iBuffer, offset2).rgb * 0.6 - backgroundColor; // mixedColor *= .875; float fadeAmt = 0.0015; // fade this amount each frame // 0.002 mixedColor = (mixedColor - fadeAmt) * .995; // float nn = snoise(uvBig * 10.) * 20.; // mixedColor *= clamp(nn, 0.98, 1.0); vec4 spectrum = abs( abs( .95*atan(uv.x, uv.y) -vec4(0,2,4,0) ) -3. )-1.; float angle = atan(pixel.x, pixel.y); float dist = length(pixel - mouse2*0.15) * 8. + sin(iTime) * .01; // mixedColor *= pow(1.-dist*0.002, 2.); // Flowery shapes // float edge = abs(dist * 0.5); float flowerPeaks = .05 * amplitudeFactor * size; float flowerPetals = 7.; float edge = abs((dist + sin(angle * flowerPetals + iTime * 0.5) * sin(iTime * 1.5) * flowerPeaks) * 0.65 / size); // float edge = abs((dist + sin(angle * 4. + iTime * 2.) * sin(iTime * 3.) * 0.75) * 1.); // vec4 rainbow = abs( abs( .95*mod(iTime * 1., 2. * PI) - vec4(0,2,4,0) ) -3. )-1.; // vec4 rainbow = vec4(0,2,4,0); float colorChangeSpeed = 0.75 + 0.05 * sin(iTime) * 1.5; float rainbowInput = timeFrac * colorChangeSpeed; // NOISE! // float nn = snoise(uv * 0.25 + iTime * 0.005 + mixedColor.b * 0.01) * 20.; // rainbowInput += nn; float brightness = 0.7; vec4 rainbow = sqrt(j2hue(cos(rainbowInput))) + vec4(baseColor,0) - 1.0 + brightness; float factor = smoothstep(1., .9, edge) * pow(edge, 2.); vec3 color = rainbow.rgb * smoothstep(1., .9, edge) * pow(edge, 20.); vec4 ring = vec4( backgroundColor + clamp( mixedColor + color, 0., 1.) , 1.0); // float t = fworley(uv * u_resolution.xy / 1500.0); // t *= exp(-length2(abs(0.7*uv - 1.0))); // float tExp = pow(t, 2. - t); // vec3 c1 = color1 * (1.0 - t); // vec3 c2 = color2 * tExp; // vec4 cells = vec4(mixedColor * 0.25, 1.) + vec4(pow(t, 1.0 - t) * (c1 + c2), 1.0); // gl_FragColor = clamp(ring + cells * 0.5, 0.0, 1.0); // float nn = snoise(uv * 10.) * 0.01; // creepy! gl_FragColor = ring; } `