usearch
Version:
Smaller & Faster Single-File Vector Search Engine from Unum
180 lines (152 loc) • 5.75 kB
JavaScript
// Currently the builds are expected to run only on Node.js,
// but Deno tests pass as well.
//
// Bun supports `node:assert`, but not `node:test`.
// Using `require` we can make the tests compatible with Bun.
//
// const isBun = typeof Bun !== "undefined";
// let assert, test;
// if (isBun) {
// assert = require('node:assert');
// test = require('bun:test');
// } else {
// assert = require('node:assert');
// test = require('node:test');
// }
//
// That, however, leads to other issues, like the following:
//
// require is not defined in ES module scope, you can use import instead
//
// https://bun.sh/docs/runtime/nodejs-apis
// https://bun.sh/guides/util/detect-bun
import test from "node:test";
import assert from "node:assert";
import * as simsimd from "./dist/esm/simsimd.js";
import * as fallback from "./dist/esm/fallback.js";
function assertAlmostEqual(actual, expected, tolerance = 1e-6) {
const lowerBound = expected - tolerance;
const upperBound = expected + tolerance;
assert(
actual >= lowerBound && actual <= upperBound,
`Expected ${actual} to be almost equal to ${expected}`
);
}
test("Distance from itself", () => {
const f32s = new Float32Array([1.0, 2.0, 3.0]);
assertAlmostEqual(simsimd.sqeuclidean(f32s, f32s), 0.0, 0.01);
assertAlmostEqual(simsimd.cosine(f32s, f32s), 0.0, 0.01);
const f64s = new Float64Array([1.0, 2.0, 3.0]);
assertAlmostEqual(simsimd.sqeuclidean(f64s, f64s), 0.0, 0.01);
assertAlmostEqual(simsimd.cosine(f64s, f64s), 0.0, 0.01);
const f32sNormalized = new Float32Array([
1.0 / Math.sqrt(14),
2.0 / Math.sqrt(14),
3.0 / Math.sqrt(14),
]);
assertAlmostEqual(simsimd.inner(f32sNormalized, f32sNormalized), 1.0, 0.01);
const f32sDistribution = new Float32Array([1.0 / 6, 2.0 / 6, 3.0 / 6]);
assertAlmostEqual(
simsimd.kullbackleibler(f32sDistribution, f32sDistribution),
0.0,
0.01
);
assertAlmostEqual(
simsimd.jensenshannon(f32sDistribution, f32sDistribution),
0.0,
0.01
);
const u8s = new Uint8Array([1, 2, 3]);
assertAlmostEqual(simsimd.hamming(u8s, u8s), 0.0, 0.01);
assertAlmostEqual(simsimd.jaccard(u8s, u8s), 0.0, 0.01);
});
test("Distance from itself JS fallback", () => {
const f32s = new Float32Array([1.0, 2.0, 3.0]);
assertAlmostEqual(fallback.sqeuclidean(f32s, f32s), 0.0, 0.01);
assertAlmostEqual(fallback.cosine(f32s, f32s), 0.0, 0.01);
const arrNormalized = new Float32Array([
1.0 / Math.sqrt(14),
2.0 / Math.sqrt(14),
3.0 / Math.sqrt(14),
]);
assertAlmostEqual(fallback.inner(arrNormalized, arrNormalized), 1.0, 0.01);
const f32sDistribution = new Float32Array([1.0 / 6, 2.0 / 6, 3.0 / 6]);
assertAlmostEqual(
fallback.kullbackleibler(f32sDistribution, f32sDistribution),
0.0,
0.01
);
assertAlmostEqual(
fallback.jensenshannon(f32sDistribution, f32sDistribution),
0.0,
0.01
);
const u8s = new Uint8Array([1, 2, 3]);
assertAlmostEqual(fallback.hamming(u8s, u8s), 0.0, 0.01);
assertAlmostEqual(fallback.jaccard(u8s, u8s), 0.0, 0.01);
});
const f32Array1 = new Float32Array([1.0, 2.0, 3.0]);
const f32Array2 = new Float32Array([4.0, 5.0, 6.0]);
test("Squared Euclidean Distance", () => {
const result = simsimd.sqeuclidean(f32Array1, f32Array2);
assertAlmostEqual(result, 27.0, 0.01);
});
test("Inner Distance", () => {
const result = simsimd.inner(f32Array1, f32Array2);
assertAlmostEqual(result, 32.0, 0.01);
});
test("Cosine Similarity", () => {
const result = simsimd.cosine(f32Array1, f32Array2);
assertAlmostEqual(result, 0.029, 0.01);
});
test("Squared Euclidean Distance JS", () => {
const result = fallback.sqeuclidean(f32Array1, f32Array2);
assertAlmostEqual(result, 27.0, 0.01);
});
test("Inner Distance JS", () => {
const result = fallback.inner(f32Array1, f32Array2);
assertAlmostEqual(result, 32.0, 0.01);
});
test("Cosine Similarity JS", () => {
const result = fallback.cosine(f32Array1, f32Array2);
assertAlmostEqual(result, 0.029, 0.01);
});
test("Squared Euclidean Distance C vs JS", () => {
const result = simsimd.sqeuclidean(f32Array1, f32Array2);
const resultjs = fallback.sqeuclidean(f32Array1, f32Array2);
assertAlmostEqual(resultjs, result, 0.01);
});
test("Inner Distance C vs JS", () => {
const result = simsimd.inner(f32Array1, f32Array2);
const resultjs = fallback.inner(f32Array1, f32Array2);
assertAlmostEqual(resultjs, result, 0.01);
});
test("Cosine Similarity C vs JS", () => {
const result = simsimd.cosine(f32Array1, f32Array2);
const resultjs = fallback.cosine(f32Array1, f32Array2);
assertAlmostEqual(resultjs, result, 0.01);
});
test("Hamming C vs JS", () => {
const u8s = new Uint8Array([1, 2, 3]);
const result = simsimd.hamming(u8s, u8s);
const resultjs = fallback.hamming(u8s, u8s);
assertAlmostEqual(resultjs, result, 0.01);
});
test("Jaccard C vs JS", () => {
const u8s = new Uint8Array([1, 2, 3]);
const result = simsimd.jaccard(u8s, u8s);
const resultjs = fallback.jaccard(u8s, u8s);
assertAlmostEqual(resultjs, result, 0.01);
});
test("Kullback-Leibler C vs JS", () => {
const f32sDistribution = new Float32Array([1.0 / 6, 2.0 / 6, 3.0 / 6]);
const result = simsimd.kullbackleibler(f32sDistribution, f32sDistribution);
const resultjs = fallback.kullbackleibler(f32sDistribution, f32sDistribution);
assertAlmostEqual(resultjs, result, 0.01);
});
test("Jensen-Shannon C vs JS", () => {
const f32sDistribution = new Float32Array([1.0 / 6, 2.0 / 6, 3.0 / 6]);
const result = simsimd.jensenshannon(f32sDistribution, f32sDistribution);
const resultjs = fallback.jensenshannon(f32sDistribution, f32sDistribution);
assertAlmostEqual(resultjs, result, 0.01);
});