usearch
Version:
Smaller & Faster Single-File Vector Search Engine from Unum
653 lines (599 loc) • 23.2 kB
text/typescript
import build from "node-gyp-build";
import * as path from "path";
import { existsSync } from "fs";
import { getFileName, getRoot } from "bindings";
const compiled: Compiled = build(getBuildDir(getDirName()));
type Vector = Float32Array | Float64Array | Int8Array;
type Matrix = Vector[];
type VectorOrMatrix = Vector | Matrix;
type CompiledSearchResult = [
keys: BigUint64Array,
distances: Float32Array,
counts: BigUint64Array
];
interface CompiledIndex {
add(keys: BigUint64Array, vectors: Vector): void;
search(vectors: VectorOrMatrix, k: number): CompiledSearchResult;
contains(keys: BigUint64Array): boolean[];
count(keys: BigUint64Array): number | number[];
remove(keys: BigUint64Array): number[];
dimensions(): number;
connectivity(): number;
size(): number;
capacity(): number;
save(path: string): void;
load(path: string): void;
view(path: string): void;
}
interface Compiled {
CompiledIndex: CompiledIndex;
exactSearch(
dataset: VectorOrMatrix,
queries: VectorOrMatrix,
dimensions: number,
count: number,
metric: MetricKind
): CompiledSearchResult;
}
/**
* Enumeration representing the various metric kinds used to measure the distance between vectors in the index.
* @enum {string}
* @readonly
*/
export enum MetricKind {
Unknown = "unknown",
Cos = "cos",
IP = "ip",
L2sq = "l2sq",
Haversine = "haversine",
Divergence = "divergence",
Pearson = "pearson",
Jaccard = "jaccard",
Hamming = "hamming",
Tanimoto = "tanimoto",
Sorensen = "sorensen",
}
/**
* Enumeration representing the various scalar kinds used to define the type of scalar values in vectors.
* @enum {string}
* @readonly
*/
export enum ScalarKind {
Unknown = "unknown",
F32 = "f32",
F64 = "f64",
F16 = "f16",
BF16 = "bf16",
I8 = "i8",
B1 = "b1",
}
/**
* Represents a set of search results.
*/
export class Matches {
/**
* Constructs a Matches object.
*
* @param {BigUint64Array} keys - The keys of the nearest neighbors found.
* @param {Float32Array} distances - The distances of the nearest neighbors found.
*/
constructor(public keys: BigUint64Array, public distances: Float32Array) { }
}
/**
* Represents a set of batched search results.
*/
export class BatchMatches {
/**
* Constructs a BatchMatches object.
*
* @param {BigUint64Array} keys - The keys of the nearest neighbors found in the batch.
* @param {Float32Array} distances - The distances of the nearest neighbors found in the batch.
* @param {BigUint64Array} counts - The number of neighbors found for each query in the batch.
* @param {number} k - The limit for search results per query in the batch.
*/
constructor(
public keys: BigUint64Array,
public distances: Float32Array,
public counts: BigUint64Array,
public k: number
) { }
/**
* Retrieves a Matches object at the specified index in the batch.
*
* @param {number} i - The index at which to retrieve the Matches object.
* @returns {Matches} - A Matches object representing the search results at the specified index in the batch.
*/
get(i: number): Matches {
const index = Number(i) * Number(this.k);
const count = Number(this.counts[i]);
const keysSlice = this.keys.slice(index, index + count);
const distancesSlice = this.distances.slice(index, index + count);
return new Matches(keysSlice, distancesSlice);
}
}
function isOneKey(keys: number | bigint | BigUint64Array | bigint[]): boolean {
return (
(!Number.isNaN(keys) && typeof keys === "number") ||
typeof keys === "bigint"
);
}
function normalizeKeys(keys: unknown): BigUint64Array {
if (keys instanceof BigUint64Array) {
return keys;
}
let normalizedKeys: BigUint64Array;
if (
(typeof keys === "number" && !Number.isNaN(keys)) ||
typeof keys === "bigint"
) {
normalizedKeys = BigUint64Array.of(BigInt(keys));
} else if (Array.isArray(keys)) {
const bigintkeys = keys.map((key) => {
if (typeof key === "bigint") {
return key;
} else if (
typeof key === "number" &&
!Number.isNaN(key) &&
Number.isInteger(key) &&
key >= 0
) {
return BigInt(key);
}
throw new Error("All keys must be positive integers or bigints.");
});
normalizedKeys = BigUint64Array.from(bigintkeys);
} else {
throw new Error(
"Keys must be a number, bigint, an array of numbers or bigints, or a BigUint64Array."
);
}
return normalizedKeys;
}
function isVector(vectors: unknown) {
return (
vectors instanceof Float32Array ||
vectors instanceof Float64Array ||
vectors instanceof Int8Array
);
}
function normalizeVectors(
vectors: VectorOrMatrix,
dimensions: number,
targetType: NumberArrayConstructor = Float32Array
): Vector {
let flattenedVectors: Vector;
if (isVector(vectors)) {
flattenedVectors =
vectors.constructor === targetType
? vectors
: new targetType(vectors as Vector);
} else if (Array.isArray(vectors)) {
let totalLength = 0;
for (const vec of vectors) totalLength += vec.length;
flattenedVectors = new targetType(totalLength);
let offset = 0;
for (const vec of vectors) {
flattenedVectors.set(vec, offset);
offset += vec.length;
}
} else {
throw new Error("Vectors must be a TypedArray or an array of arrays.");
}
if (flattenedVectors.length % dimensions !== 0)
throw new Error(
"The size of the flattened vectors must be a multiple of the dimension of the vectors."
);
return flattenedVectors;
}
export interface IndexCongif {
dimensions: number;
metric: MetricKind;
quantization: ScalarKind;
connectivity: number;
expansion_add: number;
expansion_search: number;
multi: boolean;
}
export class Index {
/**
* Constructs a new index.
*
* @param {(number | {dimensions: number, metric: MetricKind = MetricKind.Cos, quantization: ScalarKind = ScalarKind.F32, connectivity: number = 0, expansion_add: number = 0, expansion_search: number = 0, multi: boolean = false})} dimensionsOrConfigs
* @param {MetricKind} [metric=MetricKind.Cos] - Optional, default is 'cos'.
* @param {ScalarKind} [quantization=ScalarKind.F32] - Optional, default is 'f32'.
* @param {number} [connectivity=0] - Optional, default is 0.
* @param {number} [expansion_add=0] - Optional, default is 0.
* @param {number} [expansion_search=0] - Optional, default is 0.
* @param {boolean} [multi=false] - Optional, default is false.
* @throws Will throw an error if any of the parameters are of incorrect type or invalid value.
*/
constructor(
dimensionsOrConfigs: number | bigint | IndexCongif,
metric: MetricKind = MetricKind.Cos,
quantization: ScalarKind = ScalarKind.F32,
connectivity: number = 0,
expansion_add: number = 0,
expansion_search: number = 0,
multi: boolean = false
) {
let dimensions: number | bigint;
if (
(typeof dimensionsOrConfigs === "number" &&
!Number.isNaN(dimensionsOrConfigs)) ||
typeof dimensionsOrConfigs === "bigint"
) {
// Parameters are provided as individual arguments
dimensions = dimensionsOrConfigs;
} else if (
typeof dimensionsOrConfigs === "object" &&
dimensionsOrConfigs !== null
) {
// Parameters are provided as an object
({
dimensions,
metric = MetricKind.Cos,
quantization = ScalarKind.F32,
connectivity = 0,
expansion_add = 0,
expansion_search = 0,
multi = false,
} = dimensionsOrConfigs);
} else {
throw new Error(
"Invalid arguments. Expected either individual arguments or a single object argument."
);
}
if (
(typeof dimensions !== 'bigint' && (!Number.isInteger(dimensions) || dimensions <= 0)) ||
(typeof connectivity !== 'bigint' && (!Number.isInteger(connectivity) || connectivity < 0)) ||
(typeof expansion_add !== 'bigint' && (!Number.isInteger(expansion_add) || expansion_add < 0)) ||
(typeof expansion_search !== 'bigint' && (!Number.isInteger(expansion_search) || expansion_search < 0))) {
throw new Error(
"`dimensions`, `connectivity`, `expansion_add`, and `expansion_search` must be non-negative integers, with `dimensions` being positive."
);
}
if (typeof multi !== "boolean") {
throw new Error("`multi` must be a boolean value.");
}
if (!Object.values(MetricKind).includes(metric)) {
throw new Error(
`Invalid metric: ${metric}. It must be one of: ${Object.values(
MetricKind
).join(", ")}`
);
}
if (!Object.values(ScalarKind).includes(quantization)) {
throw new Error(
`Invalid quantization: ${quantization}. It must be one of: ${Object.values(
ScalarKind
).join(", ")}`
);
}
// @ts-expect-error
this.#compiledIndex = new compiled.CompiledIndex(
dimensions,
metric,
quantization,
connectivity,
expansion_add,
expansion_search,
multi
);
}
#compiledIndex: CompiledIndex;
/**
* Add vectors to the index.
*
* This method accepts vectors and their corresponding keys for indexing.
* Each key should correspond to a vector. If a single key is provided,
* it is broadcasted to match the number of provided vectors.
*
* Vectors should be provided as a flat typed array representing a matrix
* where each row is a vector to be indexed. The matrix should have a size
* of n * d, where n is the number of vectors, and d is the dimensionality
* of the vectors.
*
* Keys should be provided as a BigInt or an array-like object of BigInts
* representing the unique identifier for each vector.
*
* @param {bigint|bigint[]|BigUint64Array} keys - Input identifiers for every vector.
* If a single key is provided, it is associated with all provided vectors.
* @param {Float32Array|Float64Array|Int8Array} vectors - Input matrix representing vectors,
* matrix of size n * d, where n is the number of vectors, and d is their dimensionality.
* @throws Will throw an error if the length of keys doesn't match the number of vectors
* or if it's not a single key.
*/
add(keys: bigint | bigint[] | BigUint64Array, vectors: Vector) {
let normalizedKeys = normalizeKeys(keys);
let normalizedVectors = normalizeVectors(
vectors,
this.#compiledIndex.dimensions()
);
let countVectors =
normalizedVectors.length / this.#compiledIndex.dimensions();
// If a single key is provided but there are multiple vectors,
// broadcast the single key value to match the number of vectors
if (normalizedKeys.length === 1 && countVectors > 1) {
normalizedKeys = BigUint64Array.from(
{ length: countVectors },
() => normalizedKeys[0]
);
} else if (normalizedKeys.length !== countVectors) {
throw new Error(
`The length of keys (${normalizedKeys.length}) must match the number of vectors (${countVectors}) or be a single key.`
);
}
// Call the compiled method
this.#compiledIndex.add(normalizedKeys, normalizedVectors);
}
/**
* Perform a k-nearest neighbor search on the index.
*
* This method accepts a matrix of query vectors and returns the closest vectors
* from the index for each query. The method returns an object containing the keys,
* distances, and counts of the matches found.
*
* Vectors should be provided as a flat typed array representing a matrix where
* each row is a vector. The matrix should be of size n * d, where n is the
* number of query vectors, and d is their dimensionality.
*
* The parameter `k` specifies the number of nearest neighbors to return for each
* query vector. If there are not enough results for a query, the result array is
* padded with -1s.
*
* @param {Float32Array|Float64Array|Int8Array|Array<Array<number>>} vectors - Input matrix representing query vectors, can be a TypedArray or an array of TypedArray.
* @param {number} k - The number of nearest neighbors to search for each query vector.
* @return {Matches|BatchMatches} - Search results for one or more queries, containing keys, distances, and counts of the matches found.
* @throws Will throw an error if `k` is not a positive integer or if the size of the vectors is not a multiple of dimensions.
* @throws Will throw an error if `vectors` is not a valid input type (TypedArray or an array of TypedArray) or if its flattened size is not a multiple of dimensions.
*/
search(vectors: VectorOrMatrix, k: number): Matches | BatchMatches {
if ((!Number.isNaN(k) && typeof k !== "number") || k <= 0) {
throw new Error(
"`k` must be a positive integer representing the number of nearest neighbors to search for."
);
}
const normalizedVectors = normalizeVectors(
vectors,
this.#compiledIndex.dimensions()
);
// Call the compiled method and create Matches or BatchMatches object with the result
const result = this.#compiledIndex.search(normalizedVectors, k);
const countInQueries =
normalizedVectors.length / Number(this.#compiledIndex.dimensions());
const batchMatches = new BatchMatches(...result, k);
if (countInQueries === 1) {
return batchMatches.get(0);
} else {
return batchMatches;
}
}
/**
* Verifies the presence of one or more keys in the index.
*
* This method accepts one or multiple keys as input and returns a boolean or
* an array of booleans indicating whether each key is present in the index.
*
* @param {bigint|bigint[]|BigUint64Array} keys - The identifier(s) of the vector(s) to be checked for presence in the index.
* @return {boolean|boolean[]} - Returns true if a single key is contained in the index, false otherwise. Returns an array of booleans corresponding to the presence of each key in the index when multiple keys are provided.
* @throws Will throw an error if keys are not integers.
*/
contains(keys: bigint | bigint[] | BigUint64Array): boolean | boolean[] {
let normalizedKeys = normalizeKeys(keys);
let normalizedResults = this.#compiledIndex.contains(normalizedKeys);
if (isOneKey(keys)) return normalizedResults[0];
else return normalizedResults;
}
/**
* Counts the number of times keys shows up in the index.
*
* @param {bigint|bigint[]|BigUint64Array} keys - The identifier(s) of the vector(s) to be enumerated.
* @return {number|number[]} - Returns the number of vectors found when a single key is provided. Returns an array of big integers corresponding to the number of vectors found for each key when multiple keys are provided.
* @throws Will throw an error if keys are not integers.
*/
count(keys: bigint | bigint[] | BigUint64Array): number | number[] {
let normalizedKeys = normalizeKeys(keys);
let normalizedResults = this.#compiledIndex.count(normalizedKeys);
if (isOneKey(keys)) return (normalizedResults as unknown as number[])[0];
else return normalizedResults;
}
/**
* Removes one or multiple vectors from the index.
*
* This method accepts one or multiple keys as input and removes the corresponding vectors from the index.
* It returns the number of vectors actually removed for each key provided.
*
* @param {bigint|bigint[]|BigUint64Array} keys - The identifier(s) of the vector(s) to be removed.
* @return {number|number[]} - Returns the number of vectors deleted when a single key is provided. Returns an array of big integers corresponding to the number of vectors deleted for each key when multiple keys are provided.
* @throws Will throw an error if keys are not integers.
*/
remove(keys: bigint | bigint[] | BigUint64Array): number | number[] {
let normalizedKeys = normalizeKeys(keys);
let normalizedResults = this.#compiledIndex.remove(normalizedKeys);
if (isOneKey(keys)) return normalizedResults[0];
else return normalizedResults;
}
/**
* Returns the dimensionality of vectors.
* @return {number} The dimensionality of vectors.
*/
dimensions(): number {
return this.#compiledIndex.dimensions();
}
/**
* Returns connectivity.
* @return {number} The connectivity of index.
*/
connectivity(): number {
return this.#compiledIndex.connectivity();
}
/**
* Returns the number of vectors currently indexed.
* @return {number} The number of vectors currently indexed.
*/
size(): number {
return this.#compiledIndex.size();
}
/**
* Returns index capacity.
* @return {number} The capacity of index.
*/
capacity(): number {
return this.#compiledIndex.capacity();
}
/**
* Write index to a file.
* @param {string} path File path to write.
* @throws Will throw an error if `path` is not a string.
*/
save(path: string) {
if (typeof path !== "string")
throw new Error(
"`path` must be a string representing the file path to write."
);
this.#compiledIndex.save(path);
}
/**
* Load index from a file.
* @param {string} path File path to read.
* @throws Will throw an error if `path` is not a string.
*/
load(path: string) {
if (typeof path !== "string")
throw new Error(
"`path` must be a string representing the file path to read."
);
this.#compiledIndex.load(path);
}
/**
* View index from a file, without loading into RAM.
* @param {string} path File path to read.
* @throws Will throw an error if `path` is not a string.
*/
view(path: string) {
if (typeof path !== "string")
throw new Error(
"`path` must be a string representing the file path to read."
);
this.#compiledIndex.view(path);
}
}
type NumberArrayConstructor =
| Float64ArrayConstructor
| Float32ArrayConstructor
| Int8ArrayConstructor;
/**
* Performs an exact search on the given dataset to find the best matching vectors for each query.
*
* @param {Float32Array|Float64Array|Int8Array|Array<Array<number>>} dataset - The dataset containing vectors to be searched. It can be a TypedArray or an array of arrays.
* @param {Float32Array|Float64Array|Int8Array|Array<Array<number>>} queries - The queries containing vectors to search for in the dataset. It can be a TypedArray or an array of arrays.
* @param {number} dimensions - The dimensionality of the vectors in both the dataset and the queries. It defines the number of elements in each vector.
* @param {number} count - The number of nearest neighbors to return for each query. If the dataset contains fewer vectors than the specified count, the result will contain only the available vectors.
* @param {MetricKind} metric - The distance metric to be used for the search.
* @return {Matches|BatchMatches} - Returns a `Matches` or `BatchMatches` object containing the results of the search.
* @throws Will throw an error if `dimensions` and `count` are not positive integers.
* @throws Will throw an error if `metric` is not a valid MetricKind.
* @throws Will throw an error if `dataset` and `queries` are not valid input types (TypedArray or an array of arrays).
* @throws Will throw an error if the sizes of the flattened `dataset` and `queries` are not multiples of `dimensions`.
* @throws Will throw an error if `count` is greater than the number of vectors in the `dataset`.
*
* @example
* const dataset = [[1.0, 2.0], [3.0, 4.0]]; // Two vectors: [1.0, 2.0] and [3.0, 4.0]
* const queries = [[1.5, 2.5]]; // One vector: [1.5, 2.5]
* const dimensions = 2; // The number of elements in each vector.
* const count = 1; // The number of nearest neighbors to return for each query.
* const metric = MetricKind.IP; // Using the Inner Product distance metric.
*
* const result = exactSearch(dataset, queries, dimensions, count, metric);
* // result might be:
* // {
* // keys: BigUint64Array [ 1n ],
* // distances: Float32Array [ some_value ],
* // }
*/
function exactSearch(
dataset: VectorOrMatrix,
queries: VectorOrMatrix,
dimensions: number,
count: number,
metric: MetricKind
): Matches | BatchMatches {
// Validate and normalize the dimensions and count
dimensions = Number(dimensions);
count = Number(count);
if (count <= 0 || dimensions <= 0) {
throw new Error("Dimensions and count must be positive integers.");
}
// Validate metric
if (!Object.values(MetricKind).includes(metric)) {
throw new Error(
`Invalid metric: ${metric}. It must be one of: ${Object.values(
MetricKind
).join(", ")}`
);
}
// Flatten and normalize dataset and queries if they are arrays of arrays
let targetType: NumberArrayConstructor;
if (dataset instanceof Float64Array) targetType = Float64Array;
else if (dataset instanceof Int8Array) targetType = Int8Array;
else targetType = Float32Array; // default to Float32Array if dataset is not Float64Array or Int8Array
dataset = normalizeVectors(dataset, dimensions, targetType);
queries = normalizeVectors(queries, dimensions, targetType);
const countInDataset = dataset.length / dimensions;
const countInQueries = queries.length / dimensions;
if (count > countInDataset) {
throw new Error(
"Count must be equal or smaller than the number of vectors in the dataset."
);
}
// Call the compiled function with the normalized input
const result = compiled.exactSearch(
dataset,
queries,
dimensions,
count,
metric
);
// Create and return a Matches or BatchMatches object with the result
if (countInQueries == 1) {
return new Matches(result[0], result[1]);
} else {
return new BatchMatches(...result, count);
}
}
const usearch = {
Index,
MetricKind,
ScalarKind,
Matches,
BatchMatches,
exactSearch,
};
export default usearch;
// utility functions to help find native builds
function getBuildDir(dir: string) {
if (existsSync(path.join(dir, "build"))) return dir;
if (existsSync(path.join(dir, "prebuilds"))) return dir;
if (path.basename(dir) === ".next") {
// special case for next.js on custom node (not vercel)
const sideways = path.join(dir, "..", "node_modules", "usearch");
if (existsSync(sideways)) return getBuildDir(sideways);
}
if (dir === "/") throw new Error("Could not find native build for usearch");
return getBuildDir(path.join(dir, ".."));
}
function getDirName() {
try {
if (__dirname) return __dirname;
} catch (e) { }
return getRoot(getFileName());
}
// dummy code for ncc to include the native module
if (process.uptime() < 0) {
require(__dirname + "/../../../prebuilds/darwin-arm64+x64/usearch.node");
require(__dirname + "/../../../prebuilds/linux-arm64/usearch.node");
require(__dirname + "/../../../prebuilds/linux-x64/usearch.node");
require(__dirname + "/../../../prebuilds/win32-ia32/usearch.node");
require(__dirname + "/../../../prebuilds/win32-x64/usearch.node");
require(__dirname + "/../../../build/Release/usearch.node");
}