unsuspected-hangeul
Version:
함수형 난해한 언어 '평범한 한글'의 명세와 구현체입니다. 평범한 한글 문장으로 보이는 프로그램을 짜보세요!
1 lines • 228 kB
Source Map (JSON)
{"version":3,"file":"main.cjs","sources":["../../node_modules/eastasianwidth/eastasianwidth.js","../../node_modules/complex.js/complex.js","../src/numbers.ts","../src/abstractSyntax.ts","../src/parse.ts","../src/error.ts","../src/utils.ts","../src/builtins/arithmetics.ts","../src/builtins/constructors.ts","../src/builtins/control.ts","../src/builtins/functional.ts","../src/builtins/io.ts","../src/builtins/logic.ts","../src/modules/bitwise.ts","../src/modules/byte.ts","../src/modules/math.ts","../src/builtins/module.ts","../src/builtins/sequence.ts","../src/builtins/string.ts","../src/interpret.ts","../src/main.ts"],"sourcesContent":["var eaw = {};\n\nif ('undefined' == typeof module) {\n window.eastasianwidth = eaw;\n} else {\n module.exports = eaw;\n}\n\neaw.eastAsianWidth = function(character) {\n var x = character.charCodeAt(0);\n var y = (character.length == 2) ? character.charCodeAt(1) : 0;\n var codePoint = x;\n if ((0xD800 <= x && x <= 0xDBFF) && (0xDC00 <= y && y <= 0xDFFF)) {\n x &= 0x3FF;\n y &= 0x3FF;\n codePoint = (x << 10) | y;\n codePoint += 0x10000;\n }\n\n if ((0x3000 == codePoint) ||\n (0xFF01 <= codePoint && codePoint <= 0xFF60) ||\n (0xFFE0 <= codePoint && codePoint <= 0xFFE6)) {\n return 'F';\n }\n if ((0x20A9 == codePoint) ||\n (0xFF61 <= codePoint && codePoint <= 0xFFBE) ||\n (0xFFC2 <= codePoint && codePoint <= 0xFFC7) ||\n (0xFFCA <= codePoint && codePoint <= 0xFFCF) ||\n (0xFFD2 <= codePoint && codePoint <= 0xFFD7) ||\n (0xFFDA <= codePoint && codePoint <= 0xFFDC) ||\n (0xFFE8 <= codePoint && codePoint <= 0xFFEE)) {\n return 'H';\n }\n if ((0x1100 <= codePoint && codePoint <= 0x115F) ||\n (0x11A3 <= codePoint && codePoint <= 0x11A7) ||\n (0x11FA <= codePoint && codePoint <= 0x11FF) ||\n (0x2329 <= codePoint && codePoint <= 0x232A) ||\n (0x2E80 <= codePoint && codePoint <= 0x2E99) ||\n (0x2E9B <= codePoint && codePoint <= 0x2EF3) ||\n (0x2F00 <= codePoint && codePoint <= 0x2FD5) ||\n (0x2FF0 <= codePoint && codePoint <= 0x2FFB) ||\n (0x3001 <= codePoint && codePoint <= 0x303E) ||\n (0x3041 <= codePoint && codePoint <= 0x3096) ||\n (0x3099 <= codePoint && codePoint <= 0x30FF) ||\n (0x3105 <= codePoint && codePoint <= 0x312D) ||\n (0x3131 <= codePoint && codePoint <= 0x318E) ||\n (0x3190 <= codePoint && codePoint <= 0x31BA) ||\n (0x31C0 <= codePoint && codePoint <= 0x31E3) ||\n (0x31F0 <= codePoint && codePoint <= 0x321E) ||\n (0x3220 <= codePoint && codePoint <= 0x3247) ||\n (0x3250 <= codePoint && codePoint <= 0x32FE) ||\n (0x3300 <= codePoint && codePoint <= 0x4DBF) ||\n (0x4E00 <= codePoint && codePoint <= 0xA48C) ||\n (0xA490 <= codePoint && codePoint <= 0xA4C6) ||\n (0xA960 <= codePoint && codePoint <= 0xA97C) ||\n (0xAC00 <= codePoint && codePoint <= 0xD7A3) ||\n (0xD7B0 <= codePoint && codePoint <= 0xD7C6) ||\n (0xD7CB <= codePoint && codePoint <= 0xD7FB) ||\n (0xF900 <= codePoint && codePoint <= 0xFAFF) ||\n (0xFE10 <= codePoint && codePoint <= 0xFE19) ||\n (0xFE30 <= codePoint && codePoint <= 0xFE52) ||\n (0xFE54 <= codePoint && codePoint <= 0xFE66) ||\n (0xFE68 <= codePoint && codePoint <= 0xFE6B) ||\n (0x1B000 <= codePoint && codePoint <= 0x1B001) ||\n (0x1F200 <= codePoint && codePoint <= 0x1F202) ||\n (0x1F210 <= codePoint && codePoint <= 0x1F23A) ||\n (0x1F240 <= codePoint && codePoint <= 0x1F248) ||\n (0x1F250 <= codePoint && codePoint <= 0x1F251) ||\n (0x20000 <= codePoint && codePoint <= 0x2F73F) ||\n (0x2B740 <= codePoint && codePoint <= 0x2FFFD) ||\n (0x30000 <= codePoint && codePoint <= 0x3FFFD)) {\n return 'W';\n }\n if ((0x0020 <= codePoint && codePoint <= 0x007E) ||\n (0x00A2 <= codePoint && codePoint <= 0x00A3) ||\n (0x00A5 <= codePoint && codePoint <= 0x00A6) ||\n (0x00AC == codePoint) ||\n (0x00AF == codePoint) ||\n (0x27E6 <= codePoint && codePoint <= 0x27ED) ||\n (0x2985 <= codePoint && codePoint <= 0x2986)) {\n return 'Na';\n }\n if ((0x00A1 == codePoint) ||\n (0x00A4 == codePoint) ||\n (0x00A7 <= codePoint && codePoint <= 0x00A8) ||\n (0x00AA == codePoint) ||\n (0x00AD <= codePoint && codePoint <= 0x00AE) ||\n (0x00B0 <= codePoint && codePoint <= 0x00B4) ||\n (0x00B6 <= codePoint && codePoint <= 0x00BA) ||\n (0x00BC <= codePoint && codePoint <= 0x00BF) ||\n (0x00C6 == codePoint) ||\n (0x00D0 == codePoint) ||\n (0x00D7 <= codePoint && codePoint <= 0x00D8) ||\n (0x00DE <= codePoint && codePoint <= 0x00E1) ||\n (0x00E6 == codePoint) ||\n (0x00E8 <= codePoint && codePoint <= 0x00EA) ||\n (0x00EC <= codePoint && codePoint <= 0x00ED) ||\n (0x00F0 == codePoint) ||\n (0x00F2 <= codePoint && codePoint <= 0x00F3) ||\n (0x00F7 <= codePoint && codePoint <= 0x00FA) ||\n (0x00FC == codePoint) ||\n (0x00FE == codePoint) ||\n (0x0101 == codePoint) ||\n (0x0111 == codePoint) ||\n (0x0113 == codePoint) ||\n (0x011B == codePoint) ||\n (0x0126 <= codePoint && codePoint <= 0x0127) ||\n (0x012B == codePoint) ||\n (0x0131 <= codePoint && codePoint <= 0x0133) ||\n (0x0138 == codePoint) ||\n (0x013F <= codePoint && codePoint <= 0x0142) ||\n (0x0144 == codePoint) ||\n (0x0148 <= codePoint && codePoint <= 0x014B) ||\n (0x014D == codePoint) ||\n (0x0152 <= codePoint && codePoint <= 0x0153) ||\n (0x0166 <= codePoint && codePoint <= 0x0167) ||\n (0x016B == codePoint) ||\n (0x01CE == codePoint) ||\n (0x01D0 == codePoint) ||\n (0x01D2 == codePoint) ||\n (0x01D4 == codePoint) ||\n (0x01D6 == codePoint) ||\n (0x01D8 == codePoint) ||\n (0x01DA == codePoint) ||\n (0x01DC == codePoint) ||\n (0x0251 == codePoint) ||\n (0x0261 == codePoint) ||\n (0x02C4 == codePoint) ||\n (0x02C7 == codePoint) ||\n (0x02C9 <= codePoint && codePoint <= 0x02CB) ||\n (0x02CD == codePoint) ||\n (0x02D0 == codePoint) ||\n (0x02D8 <= codePoint && codePoint <= 0x02DB) ||\n (0x02DD == codePoint) ||\n (0x02DF == codePoint) ||\n (0x0300 <= codePoint && codePoint <= 0x036F) ||\n (0x0391 <= codePoint && codePoint <= 0x03A1) ||\n (0x03A3 <= codePoint && codePoint <= 0x03A9) ||\n (0x03B1 <= codePoint && codePoint <= 0x03C1) ||\n (0x03C3 <= codePoint && codePoint <= 0x03C9) ||\n (0x0401 == codePoint) ||\n (0x0410 <= codePoint && codePoint <= 0x044F) ||\n (0x0451 == codePoint) ||\n (0x2010 == codePoint) ||\n (0x2013 <= codePoint && codePoint <= 0x2016) ||\n (0x2018 <= codePoint && codePoint <= 0x2019) ||\n (0x201C <= codePoint && codePoint <= 0x201D) ||\n (0x2020 <= codePoint && codePoint <= 0x2022) ||\n (0x2024 <= codePoint && codePoint <= 0x2027) ||\n (0x2030 == codePoint) ||\n (0x2032 <= codePoint && codePoint <= 0x2033) ||\n (0x2035 == codePoint) ||\n (0x203B == codePoint) ||\n (0x203E == codePoint) ||\n (0x2074 == codePoint) ||\n (0x207F == codePoint) ||\n (0x2081 <= codePoint && codePoint <= 0x2084) ||\n (0x20AC == codePoint) ||\n (0x2103 == codePoint) ||\n (0x2105 == codePoint) ||\n (0x2109 == codePoint) ||\n (0x2113 == codePoint) ||\n (0x2116 == codePoint) ||\n (0x2121 <= codePoint && codePoint <= 0x2122) ||\n (0x2126 == codePoint) ||\n (0x212B == codePoint) ||\n (0x2153 <= codePoint && codePoint <= 0x2154) ||\n (0x215B <= codePoint && codePoint <= 0x215E) ||\n (0x2160 <= codePoint && codePoint <= 0x216B) ||\n (0x2170 <= codePoint && codePoint <= 0x2179) ||\n (0x2189 == codePoint) ||\n (0x2190 <= codePoint && codePoint <= 0x2199) ||\n (0x21B8 <= codePoint && codePoint <= 0x21B9) ||\n (0x21D2 == codePoint) ||\n (0x21D4 == codePoint) ||\n (0x21E7 == codePoint) ||\n (0x2200 == codePoint) ||\n (0x2202 <= codePoint && codePoint <= 0x2203) ||\n (0x2207 <= codePoint && codePoint <= 0x2208) ||\n (0x220B == codePoint) ||\n (0x220F == codePoint) ||\n (0x2211 == codePoint) ||\n (0x2215 == codePoint) ||\n (0x221A == codePoint) ||\n (0x221D <= codePoint && codePoint <= 0x2220) ||\n (0x2223 == codePoint) ||\n (0x2225 == codePoint) ||\n (0x2227 <= codePoint && codePoint <= 0x222C) ||\n (0x222E == codePoint) ||\n (0x2234 <= codePoint && codePoint <= 0x2237) ||\n (0x223C <= codePoint && codePoint <= 0x223D) ||\n (0x2248 == codePoint) ||\n (0x224C == codePoint) ||\n (0x2252 == codePoint) ||\n (0x2260 <= codePoint && codePoint <= 0x2261) ||\n (0x2264 <= codePoint && codePoint <= 0x2267) ||\n (0x226A <= codePoint && codePoint <= 0x226B) ||\n (0x226E <= codePoint && codePoint <= 0x226F) ||\n (0x2282 <= codePoint && codePoint <= 0x2283) ||\n (0x2286 <= codePoint && codePoint <= 0x2287) ||\n (0x2295 == codePoint) ||\n (0x2299 == codePoint) ||\n (0x22A5 == codePoint) ||\n (0x22BF == codePoint) ||\n (0x2312 == codePoint) ||\n (0x2460 <= codePoint && codePoint <= 0x24E9) ||\n (0x24EB <= codePoint && codePoint <= 0x254B) ||\n (0x2550 <= codePoint && codePoint <= 0x2573) ||\n (0x2580 <= codePoint && codePoint <= 0x258F) ||\n (0x2592 <= codePoint && codePoint <= 0x2595) ||\n (0x25A0 <= codePoint && codePoint <= 0x25A1) ||\n (0x25A3 <= codePoint && codePoint <= 0x25A9) ||\n (0x25B2 <= codePoint && codePoint <= 0x25B3) ||\n (0x25B6 <= codePoint && codePoint <= 0x25B7) ||\n (0x25BC <= codePoint && codePoint <= 0x25BD) ||\n (0x25C0 <= codePoint && codePoint <= 0x25C1) ||\n (0x25C6 <= codePoint && codePoint <= 0x25C8) ||\n (0x25CB == codePoint) ||\n (0x25CE <= codePoint && codePoint <= 0x25D1) ||\n (0x25E2 <= codePoint && codePoint <= 0x25E5) ||\n (0x25EF == codePoint) ||\n (0x2605 <= codePoint && codePoint <= 0x2606) ||\n (0x2609 == codePoint) ||\n (0x260E <= codePoint && codePoint <= 0x260F) ||\n (0x2614 <= codePoint && codePoint <= 0x2615) ||\n (0x261C == codePoint) ||\n (0x261E == codePoint) ||\n (0x2640 == codePoint) ||\n (0x2642 == codePoint) ||\n (0x2660 <= codePoint && codePoint <= 0x2661) ||\n (0x2663 <= codePoint && codePoint <= 0x2665) ||\n (0x2667 <= codePoint && codePoint <= 0x266A) ||\n (0x266C <= codePoint && codePoint <= 0x266D) ||\n (0x266F == codePoint) ||\n (0x269E <= codePoint && codePoint <= 0x269F) ||\n (0x26BE <= codePoint && codePoint <= 0x26BF) ||\n (0x26C4 <= codePoint && codePoint <= 0x26CD) ||\n (0x26CF <= codePoint && codePoint <= 0x26E1) ||\n (0x26E3 == codePoint) ||\n (0x26E8 <= codePoint && codePoint <= 0x26FF) ||\n (0x273D == codePoint) ||\n (0x2757 == codePoint) ||\n (0x2776 <= codePoint && codePoint <= 0x277F) ||\n (0x2B55 <= codePoint && codePoint <= 0x2B59) ||\n (0x3248 <= codePoint && codePoint <= 0x324F) ||\n (0xE000 <= codePoint && codePoint <= 0xF8FF) ||\n (0xFE00 <= codePoint && codePoint <= 0xFE0F) ||\n (0xFFFD == codePoint) ||\n (0x1F100 <= codePoint && codePoint <= 0x1F10A) ||\n (0x1F110 <= codePoint && codePoint <= 0x1F12D) ||\n (0x1F130 <= codePoint && codePoint <= 0x1F169) ||\n (0x1F170 <= codePoint && codePoint <= 0x1F19A) ||\n (0xE0100 <= codePoint && codePoint <= 0xE01EF) ||\n (0xF0000 <= codePoint && codePoint <= 0xFFFFD) ||\n (0x100000 <= codePoint && codePoint <= 0x10FFFD)) {\n return 'A';\n }\n\n return 'N';\n};\n\neaw.characterLength = function(character) {\n var code = this.eastAsianWidth(character);\n if (code == 'F' || code == 'W' || code == 'A') {\n return 2;\n } else {\n return 1;\n }\n};\n\n// Split a string considering surrogate-pairs.\nfunction stringToArray(string) {\n return string.match(/[\\uD800-\\uDBFF][\\uDC00-\\uDFFF]|[^\\uD800-\\uDFFF]/g) || [];\n}\n\neaw.length = function(string) {\n var characters = stringToArray(string);\n var len = 0;\n for (var i = 0; i < characters.length; i++) {\n len = len + this.characterLength(characters[i]);\n }\n return len;\n};\n\neaw.slice = function(text, start, end) {\n textLen = eaw.length(text)\n start = start ? start : 0;\n end = end ? end : 1;\n if (start < 0) {\n start = textLen + start;\n }\n if (end < 0) {\n end = textLen + end;\n }\n var result = '';\n var eawLen = 0;\n var chars = stringToArray(text);\n for (var i = 0; i < chars.length; i++) {\n var char = chars[i];\n var charLen = eaw.length(char);\n if (eawLen >= start - (charLen == 2 ? 1 : 0)) {\n if (eawLen + charLen <= end) {\n result += char;\n } else {\n break;\n }\n }\n eawLen += charLen;\n }\n return result;\n};\n","/**\n * @license Complex.js v2.1.1 12/05/2020\n *\n * Copyright (c) 2020, Robert Eisele (robert@xarg.org)\n * Dual licensed under the MIT or GPL Version 2 licenses.\n **/\n\n/**\n *\n * This class allows the manipulation of complex numbers.\n * You can pass a complex number in different formats. Either as object, double, string or two integer parameters.\n *\n * Object form\n * { re: <real>, im: <imaginary> }\n * { arg: <angle>, abs: <radius> }\n * { phi: <angle>, r: <radius> }\n *\n * Array / Vector form\n * [ real, imaginary ]\n *\n * Double form\n * 99.3 - Single double value\n *\n * String form\n * '23.1337' - Simple real number\n * '15+3i' - a simple complex number\n * '3-i' - a simple complex number\n *\n * Example:\n *\n * var c = new Complex('99.3+8i');\n * c.mul({r: 3, i: 9}).div(4.9).sub(3, 2);\n *\n */\n\n(function(root) {\n\n 'use strict';\n\n var cosh = Math.cosh || function(x) {\n return Math.abs(x) < 1e-9 ? 1 - x : (Math.exp(x) + Math.exp(-x)) * 0.5;\n };\n\n var sinh = Math.sinh || function(x) {\n return Math.abs(x) < 1e-9 ? x : (Math.exp(x) - Math.exp(-x)) * 0.5;\n };\n\n /**\n * Calculates cos(x) - 1 using Taylor series if x is small (-¼π ≤ x ≤ ¼π).\n *\n * @param {number} x\n * @returns {number} cos(x) - 1\n */\n var cosm1 = function(x) {\n\n var b = Math.PI / 4;\n if (-b > x || x > b) {\n return Math.cos(x) - 1.0;\n }\n\n /* Calculate horner form of polynomial of taylor series in Q\n var fac = 1, alt = 1, pol = {};\n for (var i = 0; i <= 16; i++) {\n fac*= i || 1;\n if (i % 2 == 0) {\n pol[i] = new Fraction(1, alt * fac);\n alt = -alt;\n }\n }\n console.log(new Polynomial(pol).toHorner()); // (((((((1/20922789888000x^2-1/87178291200)x^2+1/479001600)x^2-1/3628800)x^2+1/40320)x^2-1/720)x^2+1/24)x^2-1/2)x^2+1\n */\n\n var xx = x * x;\n return xx * (\n xx * (\n xx * (\n xx * (\n xx * (\n xx * (\n xx * (\n xx / 20922789888000\n - 1 / 87178291200)\n + 1 / 479001600)\n - 1 / 3628800)\n + 1 / 40320)\n - 1 / 720)\n + 1 / 24)\n - 1 / 2);\n };\n\n var hypot = function(x, y) {\n\n var a = Math.abs(x);\n var b = Math.abs(y);\n\n if (a < 3000 && b < 3000) {\n return Math.sqrt(a * a + b * b);\n }\n\n if (a < b) {\n a = b;\n b = x / y;\n } else {\n b = y / x;\n }\n return a * Math.sqrt(1 + b * b);\n };\n\n var parser_exit = function() {\n throw SyntaxError('Invalid Param');\n };\n\n /**\n * Calculates log(sqrt(a^2+b^2)) in a way to avoid overflows\n *\n * @param {number} a\n * @param {number} b\n * @returns {number}\n */\n function logHypot(a, b) {\n\n var _a = Math.abs(a);\n var _b = Math.abs(b);\n\n if (a === 0) {\n return Math.log(_b);\n }\n\n if (b === 0) {\n return Math.log(_a);\n }\n\n if (_a < 3000 && _b < 3000) {\n return Math.log(a * a + b * b) * 0.5;\n }\n\n /* I got 4 ideas to compute this property without overflow:\n *\n * Testing 1000000 times with random samples for a,b ∈ [1, 1000000000] against a big decimal library to get an error estimate\n *\n * 1. Only eliminate the square root: (OVERALL ERROR: 3.9122483030951116e-11)\n\n Math.log(a * a + b * b) / 2\n\n *\n *\n * 2. Try to use the non-overflowing pythagoras: (OVERALL ERROR: 8.889760039210159e-10)\n\n var fn = function(a, b) {\n a = Math.abs(a);\n b = Math.abs(b);\n var t = Math.min(a, b);\n a = Math.max(a, b);\n t = t / a;\n\n return Math.log(a) + Math.log(1 + t * t) / 2;\n };\n\n * 3. Abuse the identity cos(atan(y/x) = x / sqrt(x^2+y^2): (OVERALL ERROR: 3.4780178737037204e-10)\n\n Math.log(a / Math.cos(Math.atan2(b, a)))\n\n * 4. Use 3. and apply log rules: (OVERALL ERROR: 1.2014087502620896e-9)\n\n Math.log(a) - Math.log(Math.cos(Math.atan2(b, a)))\n\n */\n\n a = a / 2;\n b = b / 2;\n\n return 0.5 * Math.log(a * a + b * b) + Math.LN2;\n }\n\n var parse = function(a, b) {\n\n var z = { 're': 0, 'im': 0 };\n\n if (a === undefined || a === null) {\n z['re'] =\n z['im'] = 0;\n } else if (b !== undefined) {\n z['re'] = a;\n z['im'] = b;\n } else\n switch (typeof a) {\n\n case 'object':\n\n if ('im' in a && 're' in a) {\n z['re'] = a['re'];\n z['im'] = a['im'];\n } else if ('abs' in a && 'arg' in a) {\n if (!Number.isFinite(a['abs']) && Number.isFinite(a['arg'])) {\n return Complex['INFINITY'];\n }\n z['re'] = a['abs'] * Math.cos(a['arg']);\n z['im'] = a['abs'] * Math.sin(a['arg']);\n } else if ('r' in a && 'phi' in a) {\n if (!Number.isFinite(a['r']) && Number.isFinite(a['phi'])) {\n return Complex['INFINITY'];\n }\n z['re'] = a['r'] * Math.cos(a['phi']);\n z['im'] = a['r'] * Math.sin(a['phi']);\n } else if (a.length === 2) { // Quick array check\n z['re'] = a[0];\n z['im'] = a[1];\n } else {\n parser_exit();\n }\n break;\n\n case 'string':\n\n z['im'] = /* void */\n z['re'] = 0;\n\n var tokens = a.match(/\\d+\\.?\\d*e[+-]?\\d+|\\d+\\.?\\d*|\\.\\d+|./g);\n var plus = 1;\n var minus = 0;\n\n if (tokens === null) {\n parser_exit();\n }\n\n for (var i = 0; i < tokens.length; i++) {\n\n var c = tokens[i];\n\n if (c === ' ' || c === '\\t' || c === '\\n') {\n /* void */\n } else if (c === '+') {\n plus++;\n } else if (c === '-') {\n minus++;\n } else if (c === 'i' || c === 'I') {\n\n if (plus + minus === 0) {\n parser_exit();\n }\n\n if (tokens[i + 1] !== ' ' && !isNaN(tokens[i + 1])) {\n z['im'] += parseFloat((minus % 2 ? '-' : '') + tokens[i + 1]);\n i++;\n } else {\n z['im'] += parseFloat((minus % 2 ? '-' : '') + '1');\n }\n plus = minus = 0;\n\n } else {\n\n if (plus + minus === 0 || isNaN(c)) {\n parser_exit();\n }\n\n if (tokens[i + 1] === 'i' || tokens[i + 1] === 'I') {\n z['im'] += parseFloat((minus % 2 ? '-' : '') + c);\n i++;\n } else {\n z['re'] += parseFloat((minus % 2 ? '-' : '') + c);\n }\n plus = minus = 0;\n }\n }\n\n // Still something on the stack\n if (plus + minus > 0) {\n parser_exit();\n }\n break;\n\n case 'number':\n z['im'] = 0;\n z['re'] = a;\n break;\n\n default:\n parser_exit();\n }\n\n if (isNaN(z['re']) || isNaN(z['im'])) {\n // If a calculation is NaN, we treat it as NaN and don't throw\n //parser_exit();\n }\n\n return z;\n };\n\n /**\n * @constructor\n * @returns {Complex}\n */\n function Complex(a, b) {\n\n if (!(this instanceof Complex)) {\n return new Complex(a, b);\n }\n\n var z = parse(a, b);\n\n this['re'] = z['re'];\n this['im'] = z['im'];\n }\n\n Complex.prototype = {\n\n 're': 0,\n 'im': 0,\n\n /**\n * Calculates the sign of a complex number, which is a normalized complex\n *\n * @returns {Complex}\n */\n 'sign': function() {\n\n var abs = this['abs']();\n\n return new Complex(\n this['re'] / abs,\n this['im'] / abs);\n },\n\n /**\n * Adds two complex numbers\n *\n * @returns {Complex}\n */\n 'add': function(a, b) {\n\n var z = new Complex(a, b);\n\n // Infinity + Infinity = NaN\n if (this['isInfinite']() && z['isInfinite']()) {\n return Complex['NAN'];\n }\n\n // Infinity + z = Infinity { where z != Infinity }\n if (this['isInfinite']() || z['isInfinite']()) {\n return Complex['INFINITY'];\n }\n\n return new Complex(\n this['re'] + z['re'],\n this['im'] + z['im']);\n },\n\n /**\n * Subtracts two complex numbers\n *\n * @returns {Complex}\n */\n 'sub': function(a, b) {\n\n var z = new Complex(a, b);\n\n // Infinity - Infinity = NaN\n if (this['isInfinite']() && z['isInfinite']()) {\n return Complex['NAN'];\n }\n\n // Infinity - z = Infinity { where z != Infinity }\n if (this['isInfinite']() || z['isInfinite']()) {\n return Complex['INFINITY'];\n }\n\n return new Complex(\n this['re'] - z['re'],\n this['im'] - z['im']);\n },\n\n /**\n * Multiplies two complex numbers\n *\n * @returns {Complex}\n */\n 'mul': function(a, b) {\n\n var z = new Complex(a, b);\n\n // Infinity * 0 = NaN\n if ((this['isInfinite']() && z['isZero']()) || (this['isZero']() && z['isInfinite']())) {\n return Complex['NAN'];\n }\n\n // Infinity * z = Infinity { where z != 0 }\n if (this['isInfinite']() || z['isInfinite']()) {\n return Complex['INFINITY'];\n }\n\n // Short circuit for real values\n if (z['im'] === 0 && this['im'] === 0) {\n return new Complex(this['re'] * z['re'], 0);\n }\n\n return new Complex(\n this['re'] * z['re'] - this['im'] * z['im'],\n this['re'] * z['im'] + this['im'] * z['re']);\n },\n\n /**\n * Divides two complex numbers\n *\n * @returns {Complex}\n */\n 'div': function(a, b) {\n\n var z = new Complex(a, b);\n\n // 0 / 0 = NaN and Infinity / Infinity = NaN\n if ((this['isZero']() && z['isZero']()) || (this['isInfinite']() && z['isInfinite']())) {\n return Complex['NAN'];\n }\n\n // Infinity / 0 = Infinity\n if (this['isInfinite']() || z['isZero']()) {\n return Complex['INFINITY'];\n }\n\n // 0 / Infinity = 0\n if (this['isZero']() || z['isInfinite']()) {\n return Complex['ZERO'];\n }\n\n a = this['re'];\n b = this['im'];\n\n var c = z['re'];\n var d = z['im'];\n var t, x;\n\n if (0 === d) {\n // Divisor is real\n return new Complex(a / c, b / c);\n }\n\n if (Math.abs(c) < Math.abs(d)) {\n\n x = c / d;\n t = c * x + d;\n\n return new Complex(\n (a * x + b) / t,\n (b * x - a) / t);\n\n } else {\n\n x = d / c;\n t = d * x + c;\n\n return new Complex(\n (a + b * x) / t,\n (b - a * x) / t);\n }\n },\n\n /**\n * Calculate the power of two complex numbers\n *\n * @returns {Complex}\n */\n 'pow': function(a, b) {\n\n var z = new Complex(a, b);\n\n a = this['re'];\n b = this['im'];\n\n if (z['isZero']()) {\n return Complex['ONE'];\n }\n\n // If the exponent is real\n if (z['im'] === 0) {\n\n if (b === 0 && a > 0) {\n\n return new Complex(Math.pow(a, z['re']), 0);\n\n } else if (a === 0) { // If base is fully imaginary\n\n switch ((z['re'] % 4 + 4) % 4) {\n case 0:\n return new Complex(Math.pow(b, z['re']), 0);\n case 1:\n return new Complex(0, Math.pow(b, z['re']));\n case 2:\n return new Complex(-Math.pow(b, z['re']), 0);\n case 3:\n return new Complex(0, -Math.pow(b, z['re']));\n }\n }\n }\n\n /* I couldn't find a good formula, so here is a derivation and optimization\n *\n * z_1^z_2 = (a + bi)^(c + di)\n * = exp((c + di) * log(a + bi)\n * = pow(a^2 + b^2, (c + di) / 2) * exp(i(c + di)atan2(b, a))\n * =>...\n * Re = (pow(a^2 + b^2, c / 2) * exp(-d * atan2(b, a))) * cos(d * log(a^2 + b^2) / 2 + c * atan2(b, a))\n * Im = (pow(a^2 + b^2, c / 2) * exp(-d * atan2(b, a))) * sin(d * log(a^2 + b^2) / 2 + c * atan2(b, a))\n *\n * =>...\n * Re = exp(c * log(sqrt(a^2 + b^2)) - d * atan2(b, a)) * cos(d * log(sqrt(a^2 + b^2)) + c * atan2(b, a))\n * Im = exp(c * log(sqrt(a^2 + b^2)) - d * atan2(b, a)) * sin(d * log(sqrt(a^2 + b^2)) + c * atan2(b, a))\n *\n * =>\n * Re = exp(c * logsq2 - d * arg(z_1)) * cos(d * logsq2 + c * arg(z_1))\n * Im = exp(c * logsq2 - d * arg(z_1)) * sin(d * logsq2 + c * arg(z_1))\n *\n */\n\n if (a === 0 && b === 0 && z['re'] > 0 && z['im'] >= 0) {\n return Complex['ZERO'];\n }\n\n var arg = Math.atan2(b, a);\n var loh = logHypot(a, b);\n\n a = Math.exp(z['re'] * loh - z['im'] * arg);\n b = z['im'] * loh + z['re'] * arg;\n return new Complex(\n a * Math.cos(b),\n a * Math.sin(b));\n },\n\n /**\n * Calculate the complex square root\n *\n * @returns {Complex}\n */\n 'sqrt': function() {\n\n var a = this['re'];\n var b = this['im'];\n var r = this['abs']();\n\n var re, im;\n\n if (a >= 0) {\n\n if (b === 0) {\n return new Complex(Math.sqrt(a), 0);\n }\n\n re = 0.5 * Math.sqrt(2.0 * (r + a));\n } else {\n re = Math.abs(b) / Math.sqrt(2 * (r - a));\n }\n\n if (a <= 0) {\n im = 0.5 * Math.sqrt(2.0 * (r - a));\n } else {\n im = Math.abs(b) / Math.sqrt(2 * (r + a));\n }\n\n return new Complex(re, b < 0 ? -im : im);\n },\n\n /**\n * Calculate the complex exponent\n *\n * @returns {Complex}\n */\n 'exp': function() {\n\n var tmp = Math.exp(this['re']);\n\n if (this['im'] === 0) {\n //return new Complex(tmp, 0);\n }\n return new Complex(\n tmp * Math.cos(this['im']),\n tmp * Math.sin(this['im']));\n },\n\n /**\n * Calculate the complex exponent and subtracts one.\n *\n * This may be more accurate than `Complex(x).exp().sub(1)` if\n * `x` is small.\n *\n * @returns {Complex}\n */\n 'expm1': function() {\n\n /**\n * exp(a + i*b) - 1\n = exp(a) * (cos(b) + j*sin(b)) - 1\n = expm1(a)*cos(b) + cosm1(b) + j*exp(a)*sin(b)\n */\n\n var a = this['re'];\n var b = this['im'];\n\n return new Complex(\n Math.expm1(a) * Math.cos(b) + cosm1(b),\n Math.exp(a) * Math.sin(b));\n },\n\n /**\n * Calculate the natural log\n *\n * @returns {Complex}\n */\n 'log': function() {\n\n var a = this['re'];\n var b = this['im'];\n\n if (b === 0 && a > 0) {\n //return new Complex(Math.log(a), 0);\n }\n\n return new Complex(\n logHypot(a, b),\n Math.atan2(b, a));\n },\n\n /**\n * Calculate the magnitude of the complex number\n *\n * @returns {number}\n */\n 'abs': function() {\n\n return hypot(this['re'], this['im']);\n },\n\n /**\n * Calculate the angle of the complex number\n *\n * @returns {number}\n */\n 'arg': function() {\n\n return Math.atan2(this['im'], this['re']);\n },\n\n /**\n * Calculate the sine of the complex number\n *\n * @returns {Complex}\n */\n 'sin': function() {\n\n // sin(z) = ( e^iz - e^-iz ) / 2i \n // = sin(a)cosh(b) + i cos(a)sinh(b)\n\n var a = this['re'];\n var b = this['im'];\n\n return new Complex(\n Math.sin(a) * cosh(b),\n Math.cos(a) * sinh(b));\n },\n\n /**\n * Calculate the cosine\n *\n * @returns {Complex}\n */\n 'cos': function() {\n\n // cos(z) = ( e^iz + e^-iz ) / 2 \n // = cos(a)cosh(b) - i sin(a)sinh(b)\n\n var a = this['re'];\n var b = this['im'];\n\n return new Complex(\n Math.cos(a) * cosh(b),\n -Math.sin(a) * sinh(b));\n },\n\n /**\n * Calculate the tangent\n *\n * @returns {Complex}\n */\n 'tan': function() {\n\n // tan(z) = sin(z) / cos(z) \n // = ( e^iz - e^-iz ) / ( i( e^iz + e^-iz ) )\n // = ( e^2iz - 1 ) / i( e^2iz + 1 )\n // = ( sin(2a) + i sinh(2b) ) / ( cos(2a) + cosh(2b) )\n\n var a = 2 * this['re'];\n var b = 2 * this['im'];\n var d = Math.cos(a) + cosh(b);\n\n return new Complex(\n Math.sin(a) / d,\n sinh(b) / d);\n },\n\n /**\n * Calculate the cotangent\n *\n * @returns {Complex}\n */\n 'cot': function() {\n\n // cot(c) = i(e^(ci) + e^(-ci)) / (e^(ci) - e^(-ci))\n\n var a = 2 * this['re'];\n var b = 2 * this['im'];\n var d = Math.cos(a) - cosh(b);\n\n return new Complex(\n -Math.sin(a) / d,\n sinh(b) / d);\n },\n\n /**\n * Calculate the secant\n *\n * @returns {Complex}\n */\n 'sec': function() {\n\n // sec(c) = 2 / (e^(ci) + e^(-ci))\n\n var a = this['re'];\n var b = this['im'];\n var d = 0.5 * cosh(2 * b) + 0.5 * Math.cos(2 * a);\n\n return new Complex(\n Math.cos(a) * cosh(b) / d,\n Math.sin(a) * sinh(b) / d);\n },\n\n /**\n * Calculate the cosecans\n *\n * @returns {Complex}\n */\n 'csc': function() {\n\n // csc(c) = 2i / (e^(ci) - e^(-ci))\n\n var a = this['re'];\n var b = this['im'];\n var d = 0.5 * cosh(2 * b) - 0.5 * Math.cos(2 * a);\n\n return new Complex(\n Math.sin(a) * cosh(b) / d,\n -Math.cos(a) * sinh(b) / d);\n },\n\n /**\n * Calculate the complex arcus sinus\n *\n * @returns {Complex}\n */\n 'asin': function() {\n\n // asin(c) = -i * log(ci + sqrt(1 - c^2))\n\n var a = this['re'];\n var b = this['im'];\n\n var t1 = new Complex(\n b * b - a * a + 1,\n -2 * a * b)['sqrt']();\n\n var t2 = new Complex(\n t1['re'] - b,\n t1['im'] + a)['log']();\n\n return new Complex(t2['im'], -t2['re']);\n },\n\n /**\n * Calculate the complex arcus cosinus\n *\n * @returns {Complex}\n */\n 'acos': function() {\n\n // acos(c) = i * log(c - i * sqrt(1 - c^2))\n\n var a = this['re'];\n var b = this['im'];\n\n var t1 = new Complex(\n b * b - a * a + 1,\n -2 * a * b)['sqrt']();\n\n var t2 = new Complex(\n t1['re'] - b,\n t1['im'] + a)['log']();\n\n return new Complex(Math.PI / 2 - t2['im'], t2['re']);\n },\n\n /**\n * Calculate the complex arcus tangent\n *\n * @returns {Complex}\n */\n 'atan': function() {\n\n // atan(c) = i / 2 log((i + x) / (i - x))\n\n var a = this['re'];\n var b = this['im'];\n\n if (a === 0) {\n\n if (b === 1) {\n return new Complex(0, Infinity);\n }\n\n if (b === -1) {\n return new Complex(0, -Infinity);\n }\n }\n\n var d = a * a + (1.0 - b) * (1.0 - b);\n\n var t1 = new Complex(\n (1 - b * b - a * a) / d,\n -2 * a / d).log();\n\n return new Complex(-0.5 * t1['im'], 0.5 * t1['re']);\n },\n\n /**\n * Calculate the complex arcus cotangent\n *\n * @returns {Complex}\n */\n 'acot': function() {\n\n // acot(c) = i / 2 log((c - i) / (c + i))\n\n var a = this['re'];\n var b = this['im'];\n\n if (b === 0) {\n return new Complex(Math.atan2(1, a), 0);\n }\n\n var d = a * a + b * b;\n return (d !== 0)\n ? new Complex(\n a / d,\n -b / d).atan()\n : new Complex(\n (a !== 0) ? a / 0 : 0,\n (b !== 0) ? -b / 0 : 0).atan();\n },\n\n /**\n * Calculate the complex arcus secant\n *\n * @returns {Complex}\n */\n 'asec': function() {\n\n // asec(c) = -i * log(1 / c + sqrt(1 - i / c^2))\n\n var a = this['re'];\n var b = this['im'];\n\n if (a === 0 && b === 0) {\n return new Complex(0, Infinity);\n }\n\n var d = a * a + b * b;\n return (d !== 0)\n ? new Complex(\n a / d,\n -b / d).acos()\n : new Complex(\n (a !== 0) ? a / 0 : 0,\n (b !== 0) ? -b / 0 : 0).acos();\n },\n\n /**\n * Calculate the complex arcus cosecans\n *\n * @returns {Complex}\n */\n 'acsc': function() {\n\n // acsc(c) = -i * log(i / c + sqrt(1 - 1 / c^2))\n\n var a = this['re'];\n var b = this['im'];\n\n if (a === 0 && b === 0) {\n return new Complex(Math.PI / 2, Infinity);\n }\n\n var d = a * a + b * b;\n return (d !== 0)\n ? new Complex(\n a / d,\n -b / d).asin()\n : new Complex(\n (a !== 0) ? a / 0 : 0,\n (b !== 0) ? -b / 0 : 0).asin();\n },\n\n /**\n * Calculate the complex sinh\n *\n * @returns {Complex}\n */\n 'sinh': function() {\n\n // sinh(c) = (e^c - e^-c) / 2\n\n var a = this['re'];\n var b = this['im'];\n\n return new Complex(\n sinh(a) * Math.cos(b),\n cosh(a) * Math.sin(b));\n },\n\n /**\n * Calculate the complex cosh\n *\n * @returns {Complex}\n */\n 'cosh': function() {\n\n // cosh(c) = (e^c + e^-c) / 2\n\n var a = this['re'];\n var b = this['im'];\n\n return new Complex(\n cosh(a) * Math.cos(b),\n sinh(a) * Math.sin(b));\n },\n\n /**\n * Calculate the complex tanh\n *\n * @returns {Complex}\n */\n 'tanh': function() {\n\n // tanh(c) = (e^c - e^-c) / (e^c + e^-c)\n\n var a = 2 * this['re'];\n var b = 2 * this['im'];\n var d = cosh(a) + Math.cos(b);\n\n return new Complex(\n sinh(a) / d,\n Math.sin(b) / d);\n },\n\n /**\n * Calculate the complex coth\n *\n * @returns {Complex}\n */\n 'coth': function() {\n\n // coth(c) = (e^c + e^-c) / (e^c - e^-c)\n\n var a = 2 * this['re'];\n var b = 2 * this['im'];\n var d = cosh(a) - Math.cos(b);\n\n return new Complex(\n sinh(a) / d,\n -Math.sin(b) / d);\n },\n\n /**\n * Calculate the complex coth\n *\n * @returns {Complex}\n */\n 'csch': function() {\n\n // csch(c) = 2 / (e^c - e^-c)\n\n var a = this['re'];\n var b = this['im'];\n var d = Math.cos(2 * b) - cosh(2 * a);\n\n return new Complex(\n -2 * sinh(a) * Math.cos(b) / d,\n 2 * cosh(a) * Math.sin(b) / d);\n },\n\n /**\n * Calculate the complex sech\n *\n * @returns {Complex}\n */\n 'sech': function() {\n\n // sech(c) = 2 / (e^c + e^-c)\n\n var a = this['re'];\n var b = this['im'];\n var d = Math.cos(2 * b) + cosh(2 * a);\n\n return new Complex(\n 2 * cosh(a) * Math.cos(b) / d,\n -2 * sinh(a) * Math.sin(b) / d);\n },\n\n /**\n * Calculate the complex asinh\n *\n * @returns {Complex}\n */\n 'asinh': function() {\n\n // asinh(c) = log(c + sqrt(c^2 + 1))\n\n var tmp = this['im'];\n this['im'] = -this['re'];\n this['re'] = tmp;\n var res = this['asin']();\n\n this['re'] = -this['im'];\n this['im'] = tmp;\n tmp = res['re'];\n\n res['re'] = -res['im'];\n res['im'] = tmp;\n return res;\n },\n\n /**\n * Calculate the complex acosh\n *\n * @returns {Complex}\n */\n 'acosh': function() {\n\n // acosh(c) = log(c + sqrt(c^2 - 1))\n\n var res = this['acos']();\n if (res['im'] <= 0) {\n var tmp = res['re'];\n res['re'] = -res['im'];\n res['im'] = tmp;\n } else {\n var tmp = res['im'];\n res['im'] = -res['re'];\n res['re'] = tmp;\n }\n return res;\n },\n\n /**\n * Calculate the complex atanh\n *\n * @returns {Complex}\n */\n 'atanh': function() {\n\n // atanh(c) = log((1+c) / (1-c)) / 2\n\n var a = this['re'];\n var b = this['im'];\n\n var noIM = a > 1 && b === 0;\n var oneMinus = 1 - a;\n var onePlus = 1 + a;\n var d = oneMinus * oneMinus + b * b;\n\n var x = (d !== 0)\n ? new Complex(\n (onePlus * oneMinus - b * b) / d,\n (b * oneMinus + onePlus * b) / d)\n : new Complex(\n (a !== -1) ? (a / 0) : 0,\n (b !== 0) ? (b / 0) : 0);\n\n var temp = x['re'];\n x['re'] = logHypot(x['re'], x['im']) / 2;\n x['im'] = Math.atan2(x['im'], temp) / 2;\n if (noIM) {\n x['im'] = -x['im'];\n }\n return x;\n },\n\n /**\n * Calculate the complex acoth\n *\n * @returns {Complex}\n */\n 'acoth': function() {\n\n // acoth(c) = log((c+1) / (c-1)) / 2\n\n var a = this['re'];\n var b = this['im'];\n\n if (a === 0 && b === 0) {\n return new Complex(0, Math.PI / 2);\n }\n\n var d = a * a + b * b;\n return (d !== 0)\n ? new Complex(\n a / d,\n -b / d).atanh()\n : new Complex(\n (a !== 0) ? a / 0 : 0,\n (b !== 0) ? -b / 0 : 0).atanh();\n },\n\n /**\n * Calculate the complex acsch\n *\n * @returns {Complex}\n */\n 'acsch': function() {\n\n // acsch(c) = log((1+sqrt(1+c^2))/c)\n\n var a = this['re'];\n var b = this['im'];\n\n if (b === 0) {\n\n return new Complex(\n (a !== 0)\n ? Math.log(a + Math.sqrt(a * a + 1))\n : Infinity, 0);\n }\n\n var d = a * a + b * b;\n return (d !== 0)\n ? new Complex(\n a / d,\n -b / d).asinh()\n : new Complex(\n (a !== 0) ? a / 0 : 0,\n (b !== 0) ? -b / 0 : 0).asinh();\n },\n\n /**\n * Calculate the complex asech\n *\n * @returns {Complex}\n */\n 'asech': function() {\n\n // asech(c) = log((1+sqrt(1-c^2))/c)\n\n var a = this['re'];\n var b = this['im'];\n\n if (this['isZero']()) {\n return Complex['INFINITY'];\n }\n\n var d = a * a + b * b;\n return (d !== 0)\n ? new Complex(\n a / d,\n -b / d).acosh()\n : new Complex(\n (a !== 0) ? a / 0 : 0,\n (b !== 0) ? -b / 0 : 0).acosh();\n },\n\n /**\n * Calculate the complex inverse 1/z\n *\n * @returns {Complex}\n */\n 'inverse': function() {\n\n // 1 / 0 = Infinity and 1 / Infinity = 0\n if (this['isZero']()) {\n return Complex['INFINITY'];\n }\n\n if (this['isInfinite']()) {\n return Complex['ZERO'];\n }\n\n var a = this['re'];\n var b = this['im'];\n\n var d = a * a + b * b;\n\n return new Complex(a / d, -b / d);\n },\n\n /**\n * Returns the complex conjugate\n *\n * @returns {Complex}\n */\n 'conjugate': function() {\n\n return new Complex(this['re'], -this['im']);\n },\n\n /**\n * Gets the negated complex number\n *\n * @returns {Complex}\n */\n 'neg': function() {\n\n return new Complex(-this['re'], -this['im']);\n },\n\n /**\n * Ceils the actual complex number\n *\n * @returns {Complex}\n */\n 'ceil': function(places) {\n\n places = Math.pow(10, places || 0);\n\n return new Complex(\n Math.ceil(this['re'] * places) / places,\n Math.ceil(this['im'] * places) / places);\n },\n\n /**\n * Floors the actual complex number\n *\n * @returns {Complex}\n */\n 'floor': function(places) {\n\n places = Math.pow(10, places || 0);\n\n return new Complex(\n Math.floor(this['re'] * places) / places,\n Math.floor(this['im'] * places) / places);\n },\n\n /**\n * Ceils the actual complex number\n *\n * @returns {Complex}\n */\n 'round': function(places) {\n\n places = Math.pow(10, places || 0);\n\n return new Complex(\n Math.round(this['re'] * places) / places,\n Math.round(this['im'] * places) / places);\n },\n\n /**\n * Compares two complex numbers\n *\n * **Note:** new Complex(Infinity).equals(Infinity) === false\n *\n * @returns {boolean}\n */\n 'equals': function(a, b) {\n\n var z = new Complex(a, b);\n\n return Math.abs(z['re'] - this['re']) <= Complex['EPSILON'] &&\n Math.abs(z['im'] - this['im']) <= Complex['EPSILON'];\n },\n\n /**\n * Clones the actual object\n *\n * @returns {Complex}\n */\n 'clone': function() {\n\n return new Complex(this['re'], this['im']);\n },\n\n /**\n * Gets a string of the actual complex number\n *\n * @returns {string}\n */\n 'toString': function() {\n\n var a = this['re'];\n var b = this['im'];\n var ret = \"\";\n\n if (this['isNaN']()) {\n return 'NaN';\n }\n\n if (this['isInfinite']()) {\n return 'Infinity';\n }\n\n if (Math.abs(a) < Complex['EPSILON']) {\n a = 0;\n }\n\n if (Math.abs(b) < Complex['EPSILON']) {\n b = 0;\n }\n\n // If is real number\n if (b === 0) {\n return ret + a;\n }\n\n if (a !== 0) {\n ret += a;\n ret += \" \";\n if (b < 0) {\n b = -b;\n ret += \"-\";\n } else {\n ret += \"+\";\n }\n ret += \" \";\n } else if (b < 0) {\n b = -b;\n ret += \"-\";\n }\n\n if (1 !== b) { // b is the absolute imaginary part\n ret += b;\n }\n return ret + \"i\";\n },\n\n /**\n * Returns the actual number as a vector\n *\n * @returns {Array}\n */\n 'toVector': function() {\n\n return [this['re'], this['im']];\n },\n\n /**\n * Returns the actual real value of the current object\n *\n * @returns {number|null}\n */\n 'valueOf': function() {\n\n if (this['im'] === 0) {\n return this['re'];\n }\n return null;\n },\n\n /**\n * Determines whether a complex number is not on the Riemann sphere.\n *\n * @returns {boolean}\n */\n 'isNaN': function() {\n return isNaN(this['re']) || isNaN(this['im']);\n },\n\n /**\n * Determines whether or not a complex number is at the zero pole of the\n * Riemann sphere.\n *\n * @returns {boolean}\n */\n 'isZero': function() {\n return this['im'] === 0 && this['re'] === 0;\n },\n\n /**\n * Determines whether a complex number is not at the infinity pole of the\n * Riemann sphere.\n *\n * @returns {boolean}\n */\n 'isFinite': function() {\n return isFinite(this['re']) && isFinite(this['im']);\n },\n\n /**\n * Determines whether or not a complex number is at the infinity pole of the\n * Riemann sphere.\n *\n * @returns {boolean}\n */\n 'isInfinite': function() {\n return !(this['isNaN']() || this['isFinite']());\n }\n };\n\n Complex['ZERO'] = new Complex(0, 0);\n Complex['ONE'] = new Complex(1, 0);\n Complex['I'] = new Complex(0, 1);\n Complex['PI'] = new Complex(Math.PI, 0);\n Complex['E'] = new Complex(Math.E, 0);\n Complex['INFINITY'] = new Complex(Infinity, Infinity);\n Complex['NAN'] = new Complex(NaN, NaN);\n Complex['EPSILON'] = 1e-15;\n\n if (typeof define === 'function' && define['amd']) {\n define([], function() {\n return Complex;\n });\n } else if (typeof exports === 'object') {\n Object.defineProperty(Complex, \"__esModule\", { 'value': true });\n Complex['default'] = Complex;\n Complex['Complex'] = Complex;\n module['exports'] = Complex;\n } else {\n root['Complex'] = Complex;\n }\n\n})(this);\n","/**\n * Number operations made generic of argument types\n */\n\nimport Complex from 'complex.js'\n\nexport type JSNumber = number | bigint | Complex\n\nMath.trunc =\n Math.trunc ||\n function (x) {\n if (isNaN(x)) {\n return NaN\n }\n if (x > 0) {\n return Math.floor(x)\n }\n return Math.ceil(x)\n }\n\nexport function toComplex(x: JSNumber | string): Complex {\n const num = typeof x === 'bigint' ? Number(x) : x\n return new Complex(num)\n}\nfunction toRealIfPossible(x: JSNumber): JSNumber {\n if (typeof x === 'bigint' || typeof x === 'number') return x\n if (isclose(x.im, 0)) return x.re\n return x\n}\n\nexport function arrayToInt(\n bigEndianArr: (number | bigint)[] | string,\n radix: number | bigint = 10n\n) {\n const TABLE = '0123456789abcdefghijklmnopqrstuvwxyz'.slice(0, Number(radix))\n const _radix = BigInt(radix)\n let arr: (number | bigint)[]\n let sign: 1n | -1n = 1n\n if (typeof bigEndianArr === 'string') {\n if (bigEndianArr[0] === '+') {\n bigEndianArr = bigEndianArr.slice(1)\n } else if (bigEndianArr[0] === '-') {\n sign = -1n\n bigEndianArr = bigEndianArr.slice(1)\n }\n\n arr = bigEndianArr\n .toLowerCase()\n .split('')\n .map((c) => TABLE.indexOf(c))\n const invalidIdx = arr.indexOf(-1)\n if (invalidIdx !== -1) {\n throw Error(\n `다음 글자를 ${radix}진법 숫자로 해석할 수 없습니다: '${bigEndianArr[invalidIdx]}'`\n )\n }\n } else {\n arr = bigEndianArr\n }\n let result = 0n\n for (let i = 0; i < arr.length; i++) {\n result *= _radix\n result += BigInt(arr[i])\n }\n return result * sign\n}\nexport function intToArray(num: bigint, radix: number | bigint = 10n) {\n if (num < 0n)\n throw Error('Cannot convert a negative integer into array form.')\n const _radix = BigInt(radix)\n const littleEndianArr: bigint[] = []\n while (num > 0n) {\n littleEndianArr.push(num % _radix)\n num /= _radix\n }\n return littleEndianArr.reverse()\n}\n\n/* Logic */\nexport function isinf(num: JSNumber): boolean {\n if (typeof num === 'bigint') return false\n if (num instanceof Complex) return isinf(num.re) || isinf(num.im)\n return !(isFinite(num) || isNaN(num))\n}\nexport function isnan(num: JSNumber): boolean {\n if (typeof num === 'bigint') return false\n if (num instanceof Complex) return num.isNaN()\n return isNaN(num)\n}\nfunction isInteger(num: bigint | number) {\n return typeof num === 'bigint' || Number.isInteger(num)\n}\n\nfunction complexEq(complexValue: Complex, numberValue: JSNumber): boolean {\n if (numberValue instanceof Complex) {\n return (\n complexValue.re === numberValue.re && complexValue.im === numberValue.im\n )\n }\n if (complexValue.im !== 0) return false\n if (typeof numberValue === 'bigint')\n return bigIntEq(numberValue, complexValue.re)\n return numberValue === complexValue.re\n}\nfunction bigIntEq(bigIntValue: bigint, realValue: number | bigint): boolean {\n return isInteger(realValue) && bigIntValue === BigInt(realValue)\n}\nexport function eq(a: JSNumber, b: JSNumber) {\n if (a instanceof Complex) return complexEq(a, b)\n if (b instanceof Complex) return complexEq(b, a)\n if (typeof a === 'bigint') return bigIntEq(a, b)\n if (typeof b === 'bigint') return bigIntEq(b, a)\n return a === b\n}\n\nexport function isclose(\n a: JSNumber,\n b: JSNumber,\n rel_tol = 1e-9,\n abs_tol = 1e-16\n) {\n if (rel_tol < 0 || abs_tol < 0) {\n throw RangeError('Tolerances must be non-negative.')\n }\n if (eq(a, b)) {\n return true\n }\n if (isinf(a) || isinf(b)) {\n return false\n }\n const _a = typeof a === 'bigint' ? Number(a) : a\n const _b = typeof b === 'bigint' ? Number(b) : b\n const diff = abs(sub(_a, _b))\n return (\n diff <= rel_tol * abs(_b) || diff <= rel_tol * abs(_a) || diff <= abs_tol\n )\n}\n\n/* Arithmetics */\nexport function abs(num: bigint): bigint\nexport function abs(num: number | Complex): number\nexport function abs(num: JSNumber): JSNumber\nexport function abs(num: JSNumber) {\n if (typeof num === 'bigint') {\n return num >= 0n ? num : -num\n } else if (num instanceof Complex) {\n return num.abs()\n }\n return Math.abs(num)\n}\n\nfunction complexAdd(a: Complex, b: Complex): Complex {\n return new Complex(a.re + b.re, a.im + b.im)\n}\nexport function add(a: JSNumber, b: JSNumber) {\n if (typeof a === 'bigint' && typeof b === 'bigint') {\n return a + b\n }\n if (a instanceof Complex || b instanceof Complex) {\n return complexAdd(toComplex(a), toComplex(b))\n }\n return Number(a) + Number(b)\n}\nfunction sub(a: bigint, b: bigint): bigint\nfunction sub(a: bigint | number, b: bigint | number): number\nfunction sub(a: JSNumber, b: JSNumber): Complex\nfunction sub(a: JSNumber, b: JSNumber): JSNumber {\n if (typeof a === 'bigint' && typeof b === 'bigint') {\n return a - b\n