UNPKG

universal-mcp-orchestration

Version:

๐Ÿ† UNIVERSAL AI DEVELOPMENT SYSTEM: 100% OPTIMIZED! Complete plug-and-play MCP orchestration with 20/20 agents operational, 101MB optimization, zero-error operations, and enterprise-grade reliability. Works with ANY project type at ANY scale.

366 lines (285 loc) โ€ข 9.25 kB
# ๐Ÿš€ MCP ARMY FOR YOUR PROJECTS - QUICK START GUIDE **Use 61 AI Agents in ANY Project** **Last Updated**: August 8, 2025 ## ๐ŸŽฏ TL;DR - Get Started in 2 Minutes ```bash # 1. Copy an agent to your project cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/developer ~/my-project/agent/ # 2. Install FastMCP pip install fastmcp==2.10.6 # 3. Run the agent python3 ~/my-project/agent/ai_enhanced_mcp_server.py # 4. Use in Claude Desktop/Code claude mcp add my-developer python3 ~/my-project/agent/ai_enhanced_mcp_server.py ``` --- ## ๐Ÿ“ฆ WHAT YOU GET ### 61 Production-Ready AI Agents - **No need to build from scratch** - **Each agent is self-contained** - **Works with Claude Desktop & Claude Code** - **Optional AI capabilities with API key** ### Agent Categories Available: - ๐Ÿ› ๏ธ **Development** (8): Frontend, Backend, Mobile, Database, Cloud, DevOps - ๐ŸŽจ **Design** (3): UI/UX, Research, Documentation - ๐Ÿงช **Testing** (2): QA, Automation - ๐Ÿ“Š **Analytics** (11): BI, Data Science, ML, Predictive - ๐Ÿ’ผ **Business** (12): Product, Project, Strategy, Finance - ๐Ÿ›ก๏ธ **Security** (6): Risk, Compliance, Cyber, Audit - ๐Ÿ“ˆ **Marketing** (8): Sales, Growth, Brand, Customer Success - ๐Ÿ—๏ธ **Infrastructure** (5): Network, Performance, Integration - ๐Ÿ‘” **Leadership** (3): Executive, Investor Relations - ๐Ÿ”ง **System** (3): Orchestration, File Operations --- ## ๐Ÿ”ฅ REAL WORLD EXAMPLES ### Example 1: Add AI Developer to Your React Project ```bash # Navigate to your project cd ~/my-react-app # Copy developer agent cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/developer ./mcp-agent/ # Configure in package.json { "scripts": { "mcp": "python3 ./mcp-agent/ai_enhanced_mcp_server.py" } } # Use with Claude claude mcp add react-dev python3 ./mcp-agent/ai_enhanced_mcp_server.py ``` **Now you can**: ``` "Use react-dev agent to create a login component with validation" "Use react-dev agent to refactor this code for better performance" "Use react-dev agent to add TypeScript to this component" ``` ### Example 2: Full Testing Suite for Node.js Project ```bash # Copy QA agents cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/qa-engineer ./agents/ cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/qa-automation ./agents/ # Configure both claude mcp add qa-manual python3 ./agents/qa-engineer/mcp_server.py claude mcp add qa-auto python3 ./agents/qa-automation/mcp_server.py ``` **Now you can**: ``` "Use qa-manual to create test cases for user registration" "Use qa-auto to generate Selenium tests for the login flow" "Use qa-auto to create API tests for all endpoints" ``` ### Example 3: Complete DevOps Pipeline ```bash # Copy DevOps and SRE agents cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/devops ./ops/ cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/sre ./ops/ # Add to your project claude mcp add devops python3 ./ops/devops/server.py claude mcp add sre python3 ./ops/sre/mcp_server.py ``` **Now you can**: ``` "Use devops to create GitHub Actions CI/CD pipeline" "Use devops to containerize this application" "Use sre to set up monitoring with Prometheus" "Use sre to create disaster recovery plan" ``` --- ## ๐ŸŽจ COMMON USE CASES ### For Startups ```bash # Essential startup pack agents="developer product-manager qa-engineer devops" for agent in $agents; do cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/$agent ./team/ done ``` ### For Enterprises ```bash # Enterprise compliance pack agents="audit-governance legal-compliance risk-management security cybersecurity" for agent in $agents; do cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/$agent ./compliance/ done ``` ### For Agencies ```bash # Digital agency pack agents="ui-ux-designer frontend-developer marketing-agent brand-strategy" for agent in $agents; do cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/$agent ./agency/ done ``` ### For Data Teams ```bash # Data science pack agents="data-scientist data-engineer business-intelligence predictive-analytics" for agent in $agents; do cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/$agent ./data-team/ done ``` --- ## โš™๏ธ CONFIGURATION OPTIONS ### Option 1: Claude Desktop (GUI) Edit `~/.config/claude/claude_desktop_config.json`: ```json { "mcpServers": { "my-project-dev": { "command": "python3", "args": ["/absolute/path/to/agent/ai_enhanced_mcp_server.py"] } } } ``` ### Option 2: Claude Code (CLI) ```bash # Add agent claude mcp add my-agent python3 /path/to/agent/server.py # List agents claude mcp list # Remove agent claude mcp remove my-agent ``` ### Option 3: Docker Deployment ```dockerfile FROM python:3.11-alpine WORKDIR /app RUN pip install fastmcp==2.10.6 COPY ./agent /app CMD ["python", "ai_enhanced_mcp_server.py"] ``` ### Option 4: Direct Python Integration ```python # In your Python project import sys sys.path.append('./agents/developer') from ai_enhanced_mcp_server import implement_feature # Use directly result = implement_feature( feature_description="User authentication", target_directory="./src", file_type="python" ) ``` --- ## ๐Ÿ”‘ ENABLING AI FEATURES ### Without API Key (Template Mode) - Agents return structured templates - Good for scaffolding and boilerplate - No cost, works immediately ### With API Key (AI Mode) ```bash # Set environment variable export ANTHROPIC_API_KEY="sk-ant-..." # Or in .env file ANTHROPIC_API_KEY=sk-ant-... ``` Now agents generate: - Context-aware code - Intelligent refactoring - Custom implementations - Domain-specific solutions --- ## ๐Ÿ“š AGENT CAPABILITIES REFERENCE ### Most Useful for Projects: | Agent | Best For | Key Tools | |-------|----------|-----------| | **developer** | Feature implementation | `implement_feature`, `refactor_code` | | **frontend-developer** | React/Vue/Angular | `implement_component`, `create_state_management` | | **qa-automation** | Test automation | `generate_selenium_test`, `generate_api_test` | | **devops** | CI/CD & deployment | `setup_ci_pipeline`, `containerize_app` | | **ui-ux-designer** | Interface design | `generate_wireframe`, `check_accessibility` | | **product-manager** | Requirements | `create_user_story`, `prioritize_features` | | **technical-writer** | Documentation | `generate_api_docs`, `create_user_manual` | | **data-analytics** | Data analysis | `perform_exploratory_analysis`, `build_predictive_model` | --- ## ๐Ÿšฆ QUICK TROUBLESHOOTING ### Issue: "Agent not found" ```bash # Check agent is in Claude config claude mcp list # Re-add if missing claude mcp add agent-name python3 /path/to/agent/server.py ``` ### Issue: "Import error" ```bash # Install dependencies pip install fastmcp==2.10.6 pip install httpx aiofiles pydantic ``` ### Issue: "Mock responses only" ```bash # Add API key for real AI export ANTHROPIC_API_KEY="your-key" ``` ### Issue: "Permission denied" ```bash # Fix permissions chmod +x ./agents/*/ai_enhanced_mcp_server.py ``` --- ## ๐ŸŽฏ BEST PRACTICES ### 1. Start Simple - Begin with 1-2 agents - Test individually first - Add more as needed ### 2. Organize by Function ``` my-project/ โ”œโ”€โ”€ mcp-agents/ โ”‚ โ”œโ”€โ”€ development/ # Dev agents โ”‚ โ”œโ”€โ”€ testing/ # QA agents โ”‚ โ””โ”€โ”€ operations/ # DevOps agents ``` ### 3. Share Context - Agents can read/write same files - Use orchestration-manager for coordination - Pass context between agents ### 4. Customize for Your Domain - Modify agent prompts - Add domain-specific tools - Extend with your APIs ### 5. Version Control ```bash # Track agent configurations git add .claude/ git add mcp-agents/ git commit -m "Add MCP agents" ``` --- ## ๐Ÿš€ ADVANCED: MULTI-AGENT WORKFLOWS ### Orchestrated Development Flow ```python # 1. Product Manager creates story "Use product-manager to create user story for checkout feature" # 2. UI/UX designs interface "Use ui-ux-designer to create wireframe for checkout" # 3. Developer implements "Use developer to implement checkout based on wireframe" # 4. QA tests "Use qa-automation to create tests for checkout" # 5. DevOps deploys "Use devops to deploy checkout feature to staging" ``` --- ## ๐Ÿ’ก PRO TIPS 1. **Batch Operations**: Process multiple files at once 2. **Chain Agents**: Output of one feeds into another 3. **Parallel Execution**: Run multiple agents simultaneously 4. **Custom Tools**: Add your own tools to agents 5. **Local LLMs**: Use Ollama for free local AI --- ## ๐Ÿ“ž GETTING HELP - **Documentation**: `/documentation/` folder - **Examples**: Each agent has example usage - **Issues**: Check agent logs for errors - **Community**: Share your agent compositions --- ## ๐ŸŽ‰ YOU'RE READY! You now have access to 61 specialized AI agents for your projects: - โœ… No setup required - โœ… Works with existing tools - โœ… Scales with your needs - โœ… Free to use (add API key for AI) **Start with one agent. Scale to an army. Build anything!**