universal-mcp-orchestration
Version:
๐ UNIVERSAL AI DEVELOPMENT SYSTEM: 100% OPTIMIZED! Complete plug-and-play MCP orchestration with 20/20 agents operational, 101MB optimization, zero-error operations, and enterprise-grade reliability. Works with ANY project type at ANY scale.
366 lines (285 loc) โข 9.25 kB
Markdown
# ๐ MCP ARMY FOR YOUR PROJECTS - QUICK START GUIDE
**Use 61 AI Agents in ANY Project**
**Last Updated**: August 8, 2025
## ๐ฏ TL;DR - Get Started in 2 Minutes
```bash
# 1. Copy an agent to your project
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/developer ~/my-project/agent/
# 2. Install FastMCP
pip install fastmcp==2.10.6
# 3. Run the agent
python3 ~/my-project/agent/ai_enhanced_mcp_server.py
# 4. Use in Claude Desktop/Code
claude mcp add my-developer python3 ~/my-project/agent/ai_enhanced_mcp_server.py
```
## ๐ฆ WHAT YOU GET
### 61 Production-Ready AI Agents
- **No need to build from scratch**
- **Each agent is self-contained**
- **Works with Claude Desktop & Claude Code**
- **Optional AI capabilities with API key**
### Agent Categories Available:
- ๐ ๏ธ **Development** (8): Frontend, Backend, Mobile, Database, Cloud, DevOps
- ๐จ **Design** (3): UI/UX, Research, Documentation
- ๐งช **Testing** (2): QA, Automation
- ๐ **Analytics** (11): BI, Data Science, ML, Predictive
- ๐ผ **Business** (12): Product, Project, Strategy, Finance
- ๐ก๏ธ **Security** (6): Risk, Compliance, Cyber, Audit
- ๐ **Marketing** (8): Sales, Growth, Brand, Customer Success
- ๐๏ธ **Infrastructure** (5): Network, Performance, Integration
- ๐ **Leadership** (3): Executive, Investor Relations
- ๐ง **System** (3): Orchestration, File Operations
## ๐ฅ REAL WORLD EXAMPLES
### Example 1: Add AI Developer to Your React Project
```bash
# Navigate to your project
cd ~/my-react-app
# Copy developer agent
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/developer ./mcp-agent/
# Configure in package.json
{
"scripts": {
"mcp": "python3 ./mcp-agent/ai_enhanced_mcp_server.py"
}
}
# Use with Claude
claude mcp add react-dev python3 ./mcp-agent/ai_enhanced_mcp_server.py
```
**Now you can**:
```
"Use react-dev agent to create a login component with validation"
"Use react-dev agent to refactor this code for better performance"
"Use react-dev agent to add TypeScript to this component"
```
### Example 2: Full Testing Suite for Node.js Project
```bash
# Copy QA agents
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/qa-engineer ./agents/
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/qa-automation ./agents/
# Configure both
claude mcp add qa-manual python3 ./agents/qa-engineer/mcp_server.py
claude mcp add qa-auto python3 ./agents/qa-automation/mcp_server.py
```
**Now you can**:
```
"Use qa-manual to create test cases for user registration"
"Use qa-auto to generate Selenium tests for the login flow"
"Use qa-auto to create API tests for all endpoints"
```
### Example 3: Complete DevOps Pipeline
```bash
# Copy DevOps and SRE agents
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/devops ./ops/
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/sre ./ops/
# Add to your project
claude mcp add devops python3 ./ops/devops/server.py
claude mcp add sre python3 ./ops/sre/mcp_server.py
```
**Now you can**:
```
"Use devops to create GitHub Actions CI/CD pipeline"
"Use devops to containerize this application"
"Use sre to set up monitoring with Prometheus"
"Use sre to create disaster recovery plan"
```
## ๐จ COMMON USE CASES
### For Startups
```bash
# Essential startup pack
agents="developer product-manager qa-engineer devops"
for agent in $agents; do
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/$agent ./team/
done
```
### For Enterprises
```bash
# Enterprise compliance pack
agents="audit-governance legal-compliance risk-management security cybersecurity"
for agent in $agents; do
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/$agent ./compliance/
done
```
### For Agencies
```bash
# Digital agency pack
agents="ui-ux-designer frontend-developer marketing-agent brand-strategy"
for agent in $agents; do
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/$agent ./agency/
done
```
### For Data Teams
```bash
# Data science pack
agents="data-scientist data-engineer business-intelligence predictive-analytics"
for agent in $agents; do
cp -r /mnt/c/Users/ytr_o/Desktop/MCP/agents/$agent ./data-team/
done
```
## โ๏ธ CONFIGURATION OPTIONS
### Option 1: Claude Desktop (GUI)
Edit `~/.config/claude/claude_desktop_config.json`:
```json
{
"mcpServers": {
"my-project-dev": {
"command": "python3",
"args": ["/absolute/path/to/agent/ai_enhanced_mcp_server.py"]
}
}
}
```
### Option 2: Claude Code (CLI)
```bash
# Add agent
claude mcp add my-agent python3 /path/to/agent/server.py
# List agents
claude mcp list
# Remove agent
claude mcp remove my-agent
```
### Option 3: Docker Deployment
```dockerfile
FROM python:3.11-alpine
WORKDIR /app
RUN pip install fastmcp==2.10.6
COPY ./agent /app
CMD ["python", "ai_enhanced_mcp_server.py"]
```
### Option 4: Direct Python Integration
```python
# In your Python project
import sys
sys.path.append('./agents/developer')
from ai_enhanced_mcp_server import implement_feature
# Use directly
result = implement_feature(
feature_description="User authentication",
target_directory="./src",
file_type="python"
)
```
## ๐ ENABLING AI FEATURES
### Without API Key (Template Mode)
- Agents return structured templates
- Good for scaffolding and boilerplate
- No cost, works immediately
### With API Key (AI Mode)
```bash
# Set environment variable
export ANTHROPIC_API_KEY="sk-ant-..."
# Or in .env file
ANTHROPIC_API_KEY=sk-ant-...
```
Now agents generate:
- Context-aware code
- Intelligent refactoring
- Custom implementations
- Domain-specific solutions
## ๐ AGENT CAPABILITIES REFERENCE
### Most Useful for Projects:
| Agent | Best For | Key Tools |
|-------|----------|-----------|
| **developer** | Feature implementation | `implement_feature`, `refactor_code` |
| **frontend-developer** | React/Vue/Angular | `implement_component`, `create_state_management` |
| **qa-automation** | Test automation | `generate_selenium_test`, `generate_api_test` |
| **devops** | CI/CD & deployment | `setup_ci_pipeline`, `containerize_app` |
| **ui-ux-designer** | Interface design | `generate_wireframe`, `check_accessibility` |
| **product-manager** | Requirements | `create_user_story`, `prioritize_features` |
| **technical-writer** | Documentation | `generate_api_docs`, `create_user_manual` |
| **data-analytics** | Data analysis | `perform_exploratory_analysis`, `build_predictive_model` |
## ๐ฆ QUICK TROUBLESHOOTING
### Issue: "Agent not found"
```bash
# Check agent is in Claude config
claude mcp list
# Re-add if missing
claude mcp add agent-name python3 /path/to/agent/server.py
```
### Issue: "Import error"
```bash
# Install dependencies
pip install fastmcp==2.10.6
pip install httpx aiofiles pydantic
```
### Issue: "Mock responses only"
```bash
# Add API key for real AI
export ANTHROPIC_API_KEY="your-key"
```
### Issue: "Permission denied"
```bash
# Fix permissions
chmod +x ./agents/*/ai_enhanced_mcp_server.py
```
## ๐ฏ BEST PRACTICES
### 1. Start Simple
- Begin with 1-2 agents
- Test individually first
- Add more as needed
### 2. Organize by Function
```
my-project/
โโโ mcp-agents/
โ โโโ development/ # Dev agents
โ โโโ testing/ # QA agents
โ โโโ operations/ # DevOps agents
```
### 3. Share Context
- Agents can read/write same files
- Use orchestration-manager for coordination
- Pass context between agents
### 4. Customize for Your Domain
- Modify agent prompts
- Add domain-specific tools
- Extend with your APIs
### 5. Version Control
```bash
# Track agent configurations
git add .claude/
git add mcp-agents/
git commit -m "Add MCP agents"
```
## ๐ ADVANCED: MULTI-AGENT WORKFLOWS
### Orchestrated Development Flow
```python
# 1. Product Manager creates story
"Use product-manager to create user story for checkout feature"
# 2. UI/UX designs interface
"Use ui-ux-designer to create wireframe for checkout"
# 3. Developer implements
"Use developer to implement checkout based on wireframe"
# 4. QA tests
"Use qa-automation to create tests for checkout"
# 5. DevOps deploys
"Use devops to deploy checkout feature to staging"
```
## ๐ก PRO TIPS
1. **Batch Operations**: Process multiple files at once
2. **Chain Agents**: Output of one feeds into another
3. **Parallel Execution**: Run multiple agents simultaneously
4. **Custom Tools**: Add your own tools to agents
5. **Local LLMs**: Use Ollama for free local AI
## ๐ GETTING HELP
- **Documentation**: `/documentation/` folder
- **Examples**: Each agent has example usage
- **Issues**: Check agent logs for errors
- **Community**: Share your agent compositions
## ๐ YOU'RE READY!
You now have access to 61 specialized AI agents for your projects:
- โ
No setup required
- โ
Works with existing tools
- โ
Scales with your needs
- โ
Free to use (add API key for AI)
**Start with one agent. Scale to an army. Build anything!**