universal-life-protocol-core
Version:
Revolutionary AI framework implementing living, conscious digital reality with meta-cognitive reasoning, attention economics, and autonomous learning
114 lines ⢠5.25 kB
JavaScript
// Demo script to showcase the CUE-CLARION-MDU Synthesis implementation
import { CuePeer, CueNetwork, ClarionMduAgent, CrtModule, CtlConsensus } from './index';
console.log('š CUE-CLARION-MDU Synthesis Demo');
console.log('=====================================\n');
// Demo 1: Basic MDU Principle
console.log('š Demo 1: Modulo-Divisive Unfolding Principle');
console.log('-----------------------------------------------');
const testCases = [
{ N: 0, B: 7 },
{ N: 7, B: 7 },
{ N: 15, B: 7 },
{ N: 42, B: 7 },
];
testCases.forEach(({ N, B }) => {
const L = Math.floor(N / B);
const A = N % B;
console.log(`N=${N}, B=${B} ā (L=${L}, A=${A}) | Layer ${L}, Address ${A}`);
});
console.log('\n');
// Demo 2: Chinese Remainder Theorem
console.log('š§® Demo 2: Chinese Remainder Theorem for Harmonic Resonance');
console.log('-----------------------------------------------------------');
const congruences = [[2, 3], [3, 5], [1, 7]];
console.log('Solving system: x ā” 2 (mod 3), x ā” 3 (mod 5), x ā” 1 (mod 7)');
try {
const solution = CrtModule.solve(congruences);
console.log(`Solution: x = ${solution}`);
console.log(`Verification: ${solution} mod 3 = ${solution % 3}, ${solution} mod 5 = ${solution % 5}, ${solution} mod 7 = ${solution % 7}`);
}
catch (error) {
console.log('CRT solving failed:', error);
}
// Test harmonic resonance detection
const domainStates = new Map();
domainStates.set('daily', { A: 0, B: 24 });
domainStates.set('weekly', { A: 0, B: 7 });
domainStates.set('monthly', { A: 5, B: 30 });
const resonant = CrtModule.checkHarmonicResonance(domainStates, ['daily', 'weekly'], 0);
console.log(`Harmonic resonance detected between daily/weekly cycles: ${resonant}`);
console.log('\n');
// Demo 3: Fano Plane CTL Consensus
console.log('š Demo 3: Continuous Transylvanian Lottery (Fano Plane)');
console.log('--------------------------------------------------------');
const validators = Array.from({ length: 7 }, (_, i) => `validator-${i}`);
const ctl = new CtlConsensus(validators);
const testSeeds = ['seed-alpha', 'seed-beta', 'seed-gamma'];
testSeeds.forEach(seed => {
const quorum = ctl.getActivatedQuorum(seed);
console.log(`Seed: ${seed} ā Activated Quorum: [${Array.from(quorum || []).join(', ')}]`);
});
console.log('\n');
// Demo 4: CLARION-MDU Agent Learning
console.log('š¤ Demo 4: CLARION-MDU Agent Cognitive Learning');
console.log('-----------------------------------------------');
const agent = new ClarionMduAgent('demo-agent');
console.log(`Agent ${agent.id} created with default base: ${agent.getMCS().activeBases.get('default')}`);
// Simulate learning experiences
const learningState = { L: 1, A: 3, B: 7, w: 2.5 };
const nextState = { L: 1, A: 4, B: 7, w: 3.0 };
console.log('Training agent with high-reward experiences...');
for (let i = 0; i < 15; i++) {
agent.learnFromExperience(learningState, 'explore', 12, nextState);
}
console.log(`Implicit knowledge states: ${agent.getImplicitKnowledge().size}`);
console.log(`Explicit rules learned: ${agent.getExplicitRules().length}`);
if (agent.getExplicitRules().length > 0) {
const rule = agent.getExplicitRules()[0];
console.log(`First rule: IF (L=${rule.condition.L}, A=${rule.condition.A}) THEN ${rule.action}`);
}
// Test decision making
const decision = agent.decideNextAction(learningState, ['explore', 'exploit', 'reconfigure']);
console.log(`Agent decision for state (${learningState.L}, ${learningState.A}): ${decision}`);
console.log('\n');
// Demo 5: Network Simulation
console.log('š Demo 5: CUE Network Simulation');
console.log('---------------------------------');
const network = new CueNetwork();
// Create peers
const peer1 = new CuePeer('./demo-peer-1.json');
const peer2 = new CuePeer('./demo-peer-2.json');
peer1.hostAgent('agent-alpha');
peer2.hostAgent('agent-beta');
network.addPeer(peer1);
network.addPeer(peer2);
console.log(`Network initialized with ${network.getStats().peerCount} peers`);
// Run simulation steps
console.log('Running simulation steps...');
for (let step = 0; step < 3; step++) {
console.log(`Step ${step + 1}:`);
network.simulationStep();
const stats = network.getStats();
console.log(` Events generated: ${Object.values(stats.eventsByType).reduce((a, b) => a + b, 0)}`);
console.log(` Event types: ${Object.keys(stats.eventsByType).join(', ')}`);
}
// Final network statistics
const finalStats = network.getStats();
console.log('\nš Final Network Statistics:');
console.log(`Total peers: ${finalStats.peerCount}`);
console.log(`Total events: ${finalStats.totalEvents}`);
console.log('Events by type:', finalStats.eventsByType);
console.log('\n⨠Demo completed successfully!');
console.log('This implementation demonstrates the full CUE-CLARION-MDU Synthesis:');
console.log('- Phase 1: Fluid Dynamics (MDU + Multi-Domain + Path History)');
console.log('- Phase 2: Evolved Consensus (CTL + CEP Engine)');
console.log('- Phase 3: Agentic Cognition (CLARION-MDU Learning)');
// Cleanup
import { existsSync, unlinkSync } from 'fs';
['./demo-peer-1.json', './demo-peer-2.json'].forEach(file => {
if (existsSync(file)) {
unlinkSync(file);
}
});
//# sourceMappingURL=demo.js.map