UNPKG

universal-life-protocol-core

Version:

Revolutionary AI framework implementing living, conscious digital reality with meta-cognitive reasoning, attention economics, and autonomous learning

47 lines 2.06 kB
/** * Provides functions for multi-domain state resolution and harmonic resonance detection. * NOTE: This is a simplified implementation. A production system would use a BigInt library. */ export class CrtModule { /** * Solves a system of congruences x ≡ a_i (mod n_i) to find the unique Universal Counter N. * @param congruences An array of [address, base] pairs, e.g., [[A_1, B_1], [A_2, B_2]]. * @returns The smallest non-negative integer solution for N. */ static solve(congruences) { const product = congruences.reduce((acc, [, base]) => acc * BigInt(base), 1n); let sum = 0n; for (const [address, base] of congruences) { const bigBase = BigInt(base); const partialProduct = product / bigBase; const inverse = this.multiplicativeInverse(partialProduct, bigBase); sum += BigInt(address) * partialProduct * inverse; } return Number(sum % product); } /** * Checks for a harmonic resonance event, which occurs if an entity's address aligns * across multiple specified domains, often at a zero-state. * @param states A map of an entity's current states across different domains. * @param targetDomains An array of domain names (e.g., 'daily_cycle', 'weekly_cycle'). * @param targetAddress The address to check for alignment (typically 0). * @returns True if all target domains are at the target address. */ static checkHarmonicResonance(states, targetDomains, targetAddress = 0) { return targetDomains.every(domainId => { const state = states.get(domainId); return state && state.A === targetAddress; }); } // Extended Euclidean Algorithm for modular multiplicative inverse with BigInts. static multiplicativeInverse(a, m) { const b = a % m; for (let x = 1n; x < m; x++) { if ((b * x) % m === 1n) { return x; } } return 1n; } } //# sourceMappingURL=crt-module.js.map