UNPKG

universal-document-mcp

Version:

Universal Document Converter MCP Server - AI-powered markdown to PDF conversion with Mermaid diagram support for Claude Desktop, Cline, and other MCP clients

161 lines (154 loc) 4.7 kB
{ "name": "universal-document-converter", "version": "1.0.0", "description": "Universal MCP Server for MD -> HTML -> PDF conversion with Mermaid optimization", "author": "AUGMENT AI Assistant", "license": "MIT", "server": { "command": "python", "args": ["mcp_universal_document_converter.py"], "env": { "PYTHONPATH": ".", "LOG_LEVEL": "INFO" } }, "tools": [ { "name": "convert_document_md_to_pdf", "description": "Universal document converter: MD -> HTML -> PDF with Mermaid optimization", "triggers": [ "convert: md -> html -> pdf", "markdown to pdf", "document conversion", "md to pdf", "convert markdown", "generate pdf", "mermaid pdf", "export pdf", "create pdf from markdown", "markdown document conversion" ], "inputSchema": { "type": "object", "properties": { "markdown_file": { "type": "string", "description": "Path to the markdown file to convert (relative to workspace)" }, "optimize_diagrams": { "type": "boolean", "description": "Whether to optimize Mermaid diagrams for better PDF rendering", "default": true }, "user_input": { "type": "string", "description": "Original user input to check for trigger keywords" } }, "required": ["markdown_file"] }, "outputSchema": { "type": "object", "properties": { "success": { "type": "boolean", "description": "Whether the conversion was successful" }, "input_file": { "type": "string", "description": "Path to the input markdown file" }, "output_file": { "type": "string", "description": "Path to the generated PDF file" }, "backup_file": { "type": "string", "description": "Path to the backup of the original file" }, "script_file": { "type": "string", "description": "Path to the generated conversion script" }, "file_size_kb": { "type": "number", "description": "Size of the generated PDF in KB" }, "analysis": { "type": "object", "description": "Document analysis results" }, "optimized": { "type": "boolean", "description": "Whether diagrams were optimized" }, "message": { "type": "string", "description": "Detailed success message with file information" }, "error": { "type": "string", "description": "Error message if conversion failed" } } } } ], "capabilities": { "document_conversion": { "formats": ["markdown", "html", "pdf"], "diagram_support": ["mermaid"], "optimization": true, "backup_creation": true, "professional_formatting": true }, "intelligent_features": { "automatic_diagram_optimization": true, "keyword_trigger_detection": true, "document_type_analysis": true, "smart_label_shortening": true, "responsive_diagram_sizing": true }, "output_features": { "a4_format": true, "custom_margins": "0.75 inches", "print_optimization": true, "page_break_handling": true, "svg_diagram_rendering": true } }, "dependencies": { "python_packages": ["playwright", "markdown"], "system_requirements": ["chromium"], "auto_install": true }, "usage_examples": [ { "trigger": "convert: md -> html -> pdf", "description": "Basic conversion trigger", "example": "I need to convert: md -> html -> pdf for my document.md file" }, { "trigger": "markdown to pdf", "description": "Simple conversion request", "example": "Can you convert this markdown to pdf?" }, { "trigger": "document conversion", "description": "General conversion request", "example": "I need document conversion for my technical paper" }, { "trigger": "mermaid pdf", "description": "Mermaid-specific conversion", "example": "Generate a mermaid pdf from my architecture document" } ], "integration": { "vscode_extension": "AUGMENT", "activation_method": "keyword_detection", "workspace_relative_paths": true, "automatic_backup": true, "progress_reporting": true } }