universal-document-mcp
Version:
Universal Document Converter MCP Server - AI-powered markdown to PDF conversion with Mermaid diagram support for Claude Desktop, Cline, and other MCP clients
161 lines (154 loc) • 4.7 kB
JSON
{
"name": "universal-document-converter",
"version": "1.0.0",
"description": "Universal MCP Server for MD -> HTML -> PDF conversion with Mermaid optimization",
"author": "AUGMENT AI Assistant",
"license": "MIT",
"server": {
"command": "python",
"args": ["mcp_universal_document_converter.py"],
"env": {
"PYTHONPATH": ".",
"LOG_LEVEL": "INFO"
}
},
"tools": [
{
"name": "convert_document_md_to_pdf",
"description": "Universal document converter: MD -> HTML -> PDF with Mermaid optimization",
"triggers": [
"convert: md -> html -> pdf",
"markdown to pdf",
"document conversion",
"md to pdf",
"convert markdown",
"generate pdf",
"mermaid pdf",
"export pdf",
"create pdf from markdown",
"markdown document conversion"
],
"inputSchema": {
"type": "object",
"properties": {
"markdown_file": {
"type": "string",
"description": "Path to the markdown file to convert (relative to workspace)"
},
"optimize_diagrams": {
"type": "boolean",
"description": "Whether to optimize Mermaid diagrams for better PDF rendering",
"default": true
},
"user_input": {
"type": "string",
"description": "Original user input to check for trigger keywords"
}
},
"required": ["markdown_file"]
},
"outputSchema": {
"type": "object",
"properties": {
"success": {
"type": "boolean",
"description": "Whether the conversion was successful"
},
"input_file": {
"type": "string",
"description": "Path to the input markdown file"
},
"output_file": {
"type": "string",
"description": "Path to the generated PDF file"
},
"backup_file": {
"type": "string",
"description": "Path to the backup of the original file"
},
"script_file": {
"type": "string",
"description": "Path to the generated conversion script"
},
"file_size_kb": {
"type": "number",
"description": "Size of the generated PDF in KB"
},
"analysis": {
"type": "object",
"description": "Document analysis results"
},
"optimized": {
"type": "boolean",
"description": "Whether diagrams were optimized"
},
"message": {
"type": "string",
"description": "Detailed success message with file information"
},
"error": {
"type": "string",
"description": "Error message if conversion failed"
}
}
}
}
],
"capabilities": {
"document_conversion": {
"formats": ["markdown", "html", "pdf"],
"diagram_support": ["mermaid"],
"optimization": true,
"backup_creation": true,
"professional_formatting": true
},
"intelligent_features": {
"automatic_diagram_optimization": true,
"keyword_trigger_detection": true,
"document_type_analysis": true,
"smart_label_shortening": true,
"responsive_diagram_sizing": true
},
"output_features": {
"a4_format": true,
"custom_margins": "0.75 inches",
"print_optimization": true,
"page_break_handling": true,
"svg_diagram_rendering": true
}
},
"dependencies": {
"python_packages": ["playwright", "markdown"],
"system_requirements": ["chromium"],
"auto_install": true
},
"usage_examples": [
{
"trigger": "convert: md -> html -> pdf",
"description": "Basic conversion trigger",
"example": "I need to convert: md -> html -> pdf for my document.md file"
},
{
"trigger": "markdown to pdf",
"description": "Simple conversion request",
"example": "Can you convert this markdown to pdf?"
},
{
"trigger": "document conversion",
"description": "General conversion request",
"example": "I need document conversion for my technical paper"
},
{
"trigger": "mermaid pdf",
"description": "Mermaid-specific conversion",
"example": "Generate a mermaid pdf from my architecture document"
}
],
"integration": {
"vscode_extension": "AUGMENT",
"activation_method": "keyword_detection",
"workspace_relative_paths": true,
"automatic_backup": true,
"progress_reporting": true
}
}