UNPKG

ultimate-mcp-server

Version:

The definitive all-in-one Model Context Protocol server for AI-assisted coding across 30+ platforms

81 lines 2.16 kB
/** * Knowledge Graph Implementation * Core graph structure and operations for cognitive memory */ import { CognitiveNode, CognitiveEdge, MemorySearchOptions, MemoryContext, CognitiveMemoryConfig } from './types.js'; import { EmbeddingProvider } from '../rag/embeddings.js'; export declare class KnowledgeGraphManager { private graph; private config; private embeddingProvider?; constructor(config?: CognitiveMemoryConfig); initialize(embeddingProvider?: EmbeddingProvider): Promise<void>; /** * Add a node to the knowledge graph */ addNode(node: Omit<CognitiveNode, 'id' | 'createdAt' | 'updatedAt' | 'accessCount' | 'lastAccessed'>): Promise<CognitiveNode>; /** * Add an edge between nodes */ addEdge(edge: Omit<CognitiveEdge, 'id' | 'createdAt'>): Promise<CognitiveEdge>; /** * Search for nodes using semantic similarity */ search(options: MemorySearchOptions): Promise<MemoryContext>; /** * Get related nodes through graph traversal */ private getRelatedNodes; /** * Update node importance based on connections and usage */ private updateNodeImportance; /** * Prune least important nodes */ private pruneNodes; /** * Prune least important edges */ private pruneEdges; /** * Remove a node and its edges */ removeNode(nodeId: string): Promise<void>; /** * Remove an edge */ removeEdge(edgeId: string): Promise<void>; /** * Calculate cosine similarity between embeddings */ private cosineSimilarity; /** * Simple text similarity fallback */ private textSimilarity; /** * Calculate recency boost */ private recencyBoost; /** * Save graph to disk */ private saveToDisk; /** * Load graph from disk */ private loadFromDisk; /** * Get graph statistics */ getStats(): Record<string, any>; /** * Export graph for visualization */ exportForVisualization(): { nodes: any[]; edges: any[]; }; } //# sourceMappingURL=knowledge-graph.d.ts.map