uglymol
Version:
Macromolecular Viewer for Crystallographers
175 lines (141 loc) • 4.89 kB
JavaScript
// Copyright 2010-2023 Three.js Authors
// SPDX-License-Identifier: MIT
import { Vector3 } from './main.js';
// from extras/core/Curve.js
class Curve {
constructor() {
this.type = 'Curve';
this.arcLengthDivisions = 200;
}
getPoints(divisions = 5) {
const points = [];
for (let d = 0; d <= divisions; d++) {
points.push(this.getPoint(d / divisions));
}
return points;
}
}
// from extras/curves/CatmullRomCurve3.js
/**
* Centripetal CatmullRom Curve - which is useful for avoiding
* cusps and self-intersections in non-uniform catmull rom curves.
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
*
* curve.type accepts centripetal(default), chordal and catmullrom
* curve.tension is used for catmullrom which defaults to 0.5
*/
/*
Based on an optimized c++ solution in
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
- http://ideone.com/NoEbVM
This CubicPoly class could be used for reusing some variables and calculations,
but for three.js curve use, it could be possible inlined and flatten into a single function call
which can be placed in CurveUtils.
*/
function CubicPoly() {
let c0 = 0,
c1 = 0,
c2 = 0,
c3 = 0;
/*
* Compute coefficients for a cubic polynomial
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
* such that
* p(0) = x0, p(1) = x1
* and
* p'(0) = t0, p'(1) = t1.
*/
function init(x0, x1, t0, t1) {
c0 = x0;
c1 = t0;
c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;
c3 = 2 * x0 - 2 * x1 + t0 + t1;
}
return {
initCatmullRom: function (x0, x1, x2, x3, tension) {
init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));
},
initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) {
// compute tangents when parameterized in [t1,t2]
let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2;
// rescale tangents for parametrization in [0,1]
t1 *= dt1;
t2 *= dt1;
init(x1, x2, t1, t2);
},
calc: function (t) {
const t2 = t * t;
const t3 = t2 * t;
return c0 + c1 * t + c2 * t2 + c3 * t3;
},
};
}
//
const tmp = /*@__PURE__*/ new Vector3();
const px = /*@__PURE__*/ new CubicPoly();
const py = /*@__PURE__*/ new CubicPoly();
const pz = /*@__PURE__*/ new CubicPoly();
class CatmullRomCurve3 extends Curve {
constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) {
super();
this.isCatmullRomCurve3 = true;
this.type = 'CatmullRomCurve3';
this.points = points;
this.closed = closed;
this.curveType = curveType;
this.tension = tension;
}
getPoint(t, optionalTarget = new Vector3()) {
const point = optionalTarget;
const points = this.points;
const l = points.length;
const p = (l - (this.closed ? 0 : 1)) * t;
let intPoint = Math.floor(p);
let weight = p - intPoint;
if (this.closed) {
intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;
} else if (weight === 0 && intPoint === l - 1) {
intPoint = l - 2;
weight = 1;
}
let p0, p3; // 4 points (p1 & p2 defined below)
if (this.closed || intPoint > 0) {
p0 = points[(intPoint - 1) % l];
} else {
// extrapolate first point
tmp.subVectors(points[0], points[1]).add(points[0]);
p0 = tmp;
}
const p1 = points[intPoint % l];
const p2 = points[(intPoint + 1) % l];
if (this.closed || intPoint + 2 < l) {
p3 = points[(intPoint + 2) % l];
} else {
// extrapolate last point
tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);
p3 = tmp;
}
if (this.curveType === 'centripetal' || this.curveType === 'chordal') {
// init Centripetal / Chordal Catmull-Rom
const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
let dt0 = Math.pow(p0.distanceToSquared(p1), pow);
let dt1 = Math.pow(p1.distanceToSquared(p2), pow);
let dt2 = Math.pow(p2.distanceToSquared(p3), pow);
// safety check for repeated points
if (dt1 < 1e-4) dt1 = 1.0;
if (dt0 < 1e-4) dt0 = dt1;
if (dt2 < 1e-4) dt2 = dt1;
px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);
py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);
pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);
} else if (this.curveType === 'catmullrom') {
px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension);
py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension);
pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension);
}
point.set(px.calc(weight), py.calc(weight), pz.calc(weight));
return point;
}
}
export { CatmullRomCurve3 };