typia
Version:
Superfast runtime validators with only one line
119 lines (116 loc) • 5.72 kB
JavaScript
import { LlmSchemaComposer } from '@samchon/openapi/lib/composers/LlmSchemaComposer.mjs';
import { TransformerError } from '../../transformers/TransformerError.mjs';
import { AtomicPredicator } from '../helpers/AtomicPredicator.mjs';
import { json_schema_bigint } from '../internal/json_schema_bigint.mjs';
import { json_schema_boolean } from '../internal/json_schema_boolean.mjs';
import { json_schema_native } from '../internal/json_schema_native.mjs';
import { json_schema_number } from '../internal/json_schema_number.mjs';
import { json_schema_string } from '../internal/json_schema_string.mjs';
import { JsonSchemasProgrammer } from '../json/JsonSchemasProgrammer.mjs';
var LlmSchemaProgrammer;
(function (LlmSchemaProgrammer) {
LlmSchemaProgrammer.write = (props) => {
const collection = JsonSchemasProgrammer.write({
version: "3.1",
metadatas: [props.metadata],
});
const $defs = {};
const result = LlmSchemaComposer.schema(props.model)({
config: {
...LlmSchemaComposer.defaultConfig(props.model),
...props.config,
},
components: collection.components,
schema: collection.schemas[0],
$defs: $defs,
});
if (result.success === false)
throw new TransformerError({
code: "typia.llm.schema",
message: "failed to convert JSON schema to LLM schema.\n\n" +
result.error.reasons
.map((r) => ` - ${r.accessor}: ${r.message}`)
.join("\n"),
});
return {
model: props.model,
$defs,
schema: result.value,
};
};
LlmSchemaProgrammer.validate = (props) => (metadata) => {
const output = [];
// no additionalProperties in ChatGPT strict mode or Gemini
if (((props.model === "chatgpt" &&
props.config
?.strict === true) ||
props.model === "gemini") &&
metadata.objects.some((o) => o.type.properties.some((p) => p.key.isSoleLiteral() === false && p.value.size() !== 0)))
output.push(`LLM schema of "${props.model}"${props.model === "chatgpt" ? " (strict mode)" : ""} does not support dynamic property in object.`);
// ChatGPT strict mode even does not support the optional property
if (props.model === "chatgpt" &&
props.config
?.strict === true &&
metadata.objects.some((o) => o.type.properties.some((p) => p.value.isRequired() === false)))
output.push(`LLM schema of "chatgpt" (strict mode) does not support optional property in object.`);
// Gemini does not support the union type
if (props.model === "gemini" && size(metadata) > 1)
output.push("Gemini model does not support the union type.");
// no recursive rule of Gemini and V3
if ((props.model === "gemini" || props.model === "3.0") &&
(props.config?.recursive ===
false ||
props.config?.recursive === 0)) {
if (metadata.objects.some((o) => o.type.recursive))
output.push(`LLM schema of "${props.model}" does not support recursive object.`);
if (metadata.arrays.some((a) => a.type.recursive))
output.push(`LLM schema of "${props.model}" does not support recursive array.`);
}
// just JSON rule
if (metadata.atomics.some((a) => a.type === "bigint") ||
metadata.constants.some((c) => c.type === "bigint"))
output.push("LLM schema does not support bigint type.");
if (metadata.tuples.some((t) => t.type.elements.some((e) => e.isRequired() === false)) ||
metadata.arrays.some((a) => a.type.value.isRequired() === false))
output.push("LLM schema does not support undefined type in array.");
if (metadata.maps.length)
output.push("LLM schema does not support Map type.");
if (metadata.sets.length)
output.push("LLM schema does not support Set type.");
for (const native of metadata.natives)
if (AtomicPredicator.native(native.name) === false &&
native.name !== "Date" &&
native.name !== "Blob" &&
native.name !== "File")
output.push(`LLM schema does not support ${native.name} type.`);
return output;
};
})(LlmSchemaProgrammer || (LlmSchemaProgrammer = {}));
const size = (metadata) => (metadata.escaped ? size(metadata.escaped.returns) : 0) +
metadata.aliases.length +
metadata.objects.length +
metadata.arrays.length +
metadata.tuples.length +
(metadata.maps.length ? 1 : 0) +
(metadata.sets.length ? 1 : 0) +
metadata.atomics
.map((a) => a.type === "boolean"
? json_schema_boolean(a).length
: a.type === "bigint"
? json_schema_bigint(a).length
: a.type === "number"
? json_schema_number(a).length
: json_schema_string(a).length)
.reduce((a, b) => a + b, 0) +
metadata.constants.filter((c) => metadata.atomics.some((a) => a.type === c.type) === false).length +
metadata.templates.length +
metadata.natives
.filter((n) => metadata.atomics.some((a) => a.type === n.name) === false &&
metadata.constants.some((c) => c.type === n.name) === false)
.map((n) => json_schema_native({
components: {},
native: n,
}).length)
.reduce((a, b) => a + b, 0);
export { LlmSchemaProgrammer };
//# sourceMappingURL=LlmSchemaProgrammer.mjs.map