UNPKG

typia

Version:

Superfast runtime validators with only one line

458 lines (457 loc) 25.1 kB
import { ILlmApplication, ILlmController, ILlmSchema } from "@samchon/openapi"; /** * > You must configure the generic argument `Class`. * * TypeScript functions to LLM function calling controller. * * Creates a controller of LLM (Large Language Model) function calling * from a TypeScript class or interface type containing the target functions to be * called by the LLM function calling feature. The returned controller contains * not only the {@link application} of {@link ILlmFunction function calling schemas}, * but also the {@link ILlmController.execute executor} of the functions. * * If you put the returned {@link ILlmController} to the LLM provider like * [OpenAI (ChatGPT)](https://openai.com/), the LLM will automatically select the * proper function and fill its arguments from the conversation (maybe chatting text) * with user (human). And you can actually call the function by using * {@link ILlmController.execute} property. This is the concept of the LLM function * calling. * * Here is an example of using `typia.llm.controller()` function for AI agent * development of performing such AI function calling to mobile API classes * through this `typia` and external `@agentica` libraries. * * ```typescript * import { Agentica } from "@agentica/core"; * import typia from "typia"; * * const agentica = new Agentica({ * model: "chatgpt", * vendor: { * api: new OpenAI({ apiKey: "********" }), * model: "gpt-4o-mini", * }, * controllers: [ * typia.llm.controller<ReactNativeFileSystem, "chatgpt">( * "filesystem", * new ReactNativeFileSystem(), * ), * typia.llm.controller<ReactNativeGallery, "chatgpt">( * "gallery", * new ReactNativeGallery(), * ), * ], * }); * await agentica.conversate( * "Organize photo collection and sort them into appropriate folders.", * ); * ``` * * Here is the list of available `Model` types with their corresponding LLM schema. * Reading the following list, and determine the `Model` type considering the * characteristics of the target LLM provider. * * - LLM provider schemas * - `chatgpt`: [`IChatGptSchema`](https://samchon.github.io/openapi/api/types/IChatGptSchema-1.html) * - `claude`: [`IClaudeSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `deepseek`: [`IDeepSeekSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `gemini`: [`IGeminiSchema`](https://samchon.github.io/openapi/api/types/IGeminiSchema-1.html) * - `llama`: [`ILlamaSchema`](https://samchon.github.io/openapi/api/types/ILlamaSchema-1.html) * - Midldle layer schemas * - `3.0`: [`ILlmSchemaV3`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3-1.html) * - `3.1`: [`ILlmSchemaV3_1`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3_1-1.html) * * @template Class Target class or interface type collecting the functions to call * @template Model LLM schema model * @template Config Configuration of LLM schema composition * @param name Identifier name of the controller * @param execute Executor instance * @param options Options for the LLM application construction * @returns Controller of LLM function calling * @reference https://wrtnlabs.io/agentica/docs/core/controller/typescript/ * @author Jeongho Nam - https://github.com/samchon */ export declare function controller(name: string, execute: object, options?: Partial<Pick<ILlmApplication.IOptions<any>, "separate">>): never; /** * TypeScript functions to LLM function calling controller. * * Creates a controller of LLM (Large Language Model) function calling * from a TypeScript class or interface type containing the target functions to be * called by the LLM function calling feature. The returned controller contains * not only the {@link application} of {@link ILlmFunction function calling schemas}, * but also the {@link ILlmController.execute executor} of the functions. * * If you put the returned {@link ILlmController} to the LLM provider like * [OpenAI (ChatGPT)](https://openai.com/), the LLM will automatically select the * proper function and fill its arguments from the conversation (maybe chatting text) * with user (human). And you can actually call the function by using * {@link ILlmController.execute} property. This is the concept of the LLM function * calling. * * Here is an example of using `typia.llm.controller()` function for AI agent * development of performing such AI function calling to mobile API classes * through this `typia` and external `@agentica` libraries. * * ```typescript * import { Agentica } from "@agentica/core"; * import typia from "typia"; * * const agentica = new Agentica({ * model: "chatgpt", * vendor: { * api: new OpenAI({ apiKey: "********" }), * model: "gpt-4o-mini", * }, * controllers: [ * typia.llm.controller<ReactNativeFileSystem, "chatgpt">( * "filesystem", * new ReactNativeFileSystem(), * ), * typia.llm.controller<ReactNativeGallery, "chatgpt">( * "gallery", * new ReactNativeGallery(), * ), * ], * }); * await agentica.conversate( * "Organize photo collection and sort them into appropriate folders.", * ); * ``` * * Here is the list of available `Model` types with their corresponding LLM schema. * Reading the following list, and determine the `Model` type considering the * characteristics of the target LLM provider. * * - LLM provider schemas * - `chatgpt`: [`IChatGptSchema`](https://samchon.github.io/openapi/api/types/IChatGptSchema-1.html) * - `claude`: [`IClaudeSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `deepseek`: [`IDeepSeekSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `gemini`: [`IGeminiSchema`](https://samchon.github.io/openapi/api/types/IGeminiSchema-1.html) * - `llama`: [`ILlamaSchema`](https://samchon.github.io/openapi/api/types/ILlamaSchema-1.html) * - Midldle layer schemas * - `3.0`: [`ILlmSchemaV3`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3-1.html) * - `3.1`: [`ILlmSchemaV3_1`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3_1-1.html) * * @template Class Target class or interface type collecting the functions to call * @template Model LLM schema model * @template Config Configuration of LLM schema composition * @param name Identifier name of the controller * @param execute Executor instance * @param options Options for the LLM application construction * @returns Controller of LLM function calling * @reference https://wrtnlabs.io/agentica/docs/core/controller/typescript/ * @author Jeongho Nam - https://github.com/samchon */ export declare function controller<Class extends Record<string, any>, Model extends ILlmSchema.Model, Config extends Partial<ILlmSchema.ModelConfig[Model] & { /** * Whether to disallow superfluous properties or not. * * If configure as `true`, {@link validateEquals} function would be * used for validation feedback, which is more strict than * {@link validate} function. * * @default false */ equals: boolean; }> = {}>(name: string, execute: Class, options?: Partial<Pick<ILlmApplication.IOptions<Model>, "separate">>): ILlmController<Model>; /** * > You must configure the generic argument `Class`. * * TypeScript functions to LLM function calling application. * * Creates an application of LLM (Large Language Model) function calling application * from a TypeScript class or interface type containing the target functions to be * called by the LLM function calling feature. * * If you put the returned {@link ILlmApplication.functions} objects to the LLM provider * like [OpenAI (ChatGPT)](https://openai.com/), the LLM will automatically select the * proper function and fill its arguments from the conversation (maybe chatting text) * with user (human). This is the concept of the LLM function calling. * * By the way, there can be some parameters (or their nested properties) which must be * composed by human, not by LLM. File uploading feature or some sensitive information * like security keys (password) are the examples. In that case, you can separate the * function parameters to both LLM and human sides by configuring the * {@link ILlmApplication.IOptions.separate} property. The separated parameters are * assigned to the {@link ILlmFunction.separated} property. * * For reference, the actual function call execution is not by LLM, but by you. * When the LLM selects the proper function and fills the arguments, you just call * the function with the LLM prepared arguments. And then informs the return value to * the LLM by system prompt. The LLM will continue the next conversation based on * the return value. * * Additionally, if you've configured {@link ILlmApplication.IOptions.separate}, * so that the parameters are separated to human and LLM sides, you can merge these * humand and LLM sides' parameters into one through {@link HttpLlm.mergeParameters} * before the actual LLM function call execution. * * Here is the list of available `Model` types with their corresponding LLM schema. * Reading the following list, and determine the `Model` type considering the * characteristics of the target LLM provider. * * - LLM provider schemas * - `chatgpt`: [`IChatGptSchema`](https://github.com/samchon/openapi/blob/master/src/structures/IChatGptSchema.ts) * - `claude`: [`IClaudeSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `deepseek`: [`IDeepSeekSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `gemini`: [`IGeminiSchema`](https://samchon.github.io/openapi/api/types/IGeminiSchema-1.html) * - `llama`: [`ILlamaSchema`](https://samchon.github.io/openapi/api/types/ILlamaSchema-1.html) * - Midldle layer schemas * - `3.0`: [`ILlmSchemaV3`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3-1.html) * - `3.1`: [`ILlmSchemaV3_1`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3_1-1.html) * * @template Class Target class or interface type collecting the functions to call * @template Model LLM schema model * @template Config Configuration of LLM schema composition * @param options Options for the LLM application construction * @returns Application of LLM function calling schemas * @reference https://platform.openai.com/docs/guides/function-calling * @author Jeongho Nam - https://github.com/samchon */ export declare function application(options?: Partial<Pick<ILlmApplication.IOptions<any>, "separate">>): never; /** * TypeScript functions to LLM function calling application. * * Creates an application of LLM (Large Language Model) function calling application * from a TypeScript class or interface type containing the target functions to be * called by the LLM function calling feature. * * If you put the returned {@link ILlmApplication.functions} objects to the LLM provider * like [OpenAI (ChatGPT)](https://openai.com/), the LLM will automatically select the * proper function and fill its arguments from the conversation (maybe chatting text) * with user (human). This is the concept of the LLM function calling. * * By the way, there can be some parameters (or their nested properties) which must be * composed by human, not by LLM. File uploading feature or some sensitive information * like security keys (password) are the examples. In that case, you can separate the * function parameters to both LLM and human sides by configuring the * {@link ILlmApplication.IOptions.separate} property. The separated parameters are * assigned to the {@link ILlmFunction.separated} property. * * For reference, the actual function call execution is not by LLM, but by you. * When the LLM selects the proper function and fills the arguments, you just call * the function with the LLM prepared arguments. And then informs the return value to * the LLM by system prompt. The LLM will continue the next conversation based on * the return value. * * Additionally, if you've configured {@link ILlmApplication.IOptions.separate}, * so that the parameters are separated to human and LLM sides, you can merge these * humand and LLM sides' parameters into one through {@link HttpLlm.mergeParameters} * before the actual LLM function call execution. * * Here is the list of available `Model` types with their corresponding LLM schema. * Reading the following list, and determine the `Model` type considering the * characteristics of the target LLM provider. * * - LLM provider schemas * - `chatgpt`: [`IChatGptSchema`](https://github.com/samchon/openapi/blob/master/src/structures/IChatGptSchema.ts) * - `claude`: [`IClaudeSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `deepseek`: [`IDeepSeekSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `gemini`: [`IGeminiSchema`](https://samchon.github.io/openapi/api/types/IGeminiSchema-1.html) * - `llama`: [`ILlamaSchema`](https://samchon.github.io/openapi/api/types/ILlamaSchema-1.html) * - Midldle layer schemas * - `3.0`: [`ILlmSchemaV3`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3-1.html) * - `3.1`: [`ILlmSchemaV3_1`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3_1-1.html) * * @template Class Target class or interface type collecting the functions to call * @template Model LLM schema model * @template Config Configuration of LLM schema composition * @param options Options for the LLM application construction * @returns Application of LLM function calling schemas * @reference https://platform.openai.com/docs/guides/function-calling * @author Jeongho Nam - https://github.com/samchon */ export declare function application<Class extends Record<string, any>, Model extends ILlmSchema.Model, Config extends Partial<{ /** * Whether to disallow superfluous properties or not. * * If configure as `true`, {@link validateEquals} function would be * used for validation feedback, which is more strict than * {@link validate} function. * * @default false */ equals: boolean; } & ILlmSchema.ModelConfig[Model]> = {}>(options?: Partial<Pick<ILlmApplication.IOptions<Model>, "separate">>): ILlmApplication<Model, Class>; /** * > You must configure the generic argument `Parameters`. * * TypeScript parameters to LLM parameters schema. * * Creates an LLM (Large Language Model) parameters schema, a type metadata that is used in the * [LLM function calling](https://platform.openai.com/docs/guides/function-calling) * and [LLM structured outputs](https://platform.openai.com/docs/guides/structured-outputs), * from a TypeScript parameters type. * * For references, LLM identifies only keyworded arguments, not positional arguments. * Therefore, the TypeScript parameters type must be an object type, and its properties * must be static. If dynamic properties are, it would be compilation error. * * Also, such parameters type can be utilized not only for the LLM function calling, * but also for the LLM structured outputs. The LLM structured outputs is a feature * that LLM (Large Language Model) can generate a structured output, not only a plain * text, by filling the parameters from the conversation (maybe chatting text) with user * (human). * * Here is the list of available `Model` types with their corresponding LLM schema. * Reading the following list, and determine the `Model` type considering the * characteristics of the target LLM provider. * * - LLM provider schemas * - `chatgpt`: [`IChatGptSchema`](https://github.com/samchon/openapi/blob/master/src/structures/IChatGptSchema.ts) * - `claude`: [`IClaudeSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `deepseek`: [`IDeepSeekSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `gemini`: [`IGeminiSchema`](https://samchon.github.io/openapi/api/types/IGeminiSchema-1.html) * - `llama`: [`ILlamaSchema`](https://samchon.github.io/openapi/api/types/ILlamaSchema-1.html) * - Midldle layer schemas * - `3.0`: [`ILlmSchemaV3`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3-1.html) * - `3.1`: [`ILlmSchemaV3_1`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3_1-1.html) * * @template Parameters Target parameters type * @template Model LLM schema model * @template Config Configuration of LLM schema composition * @returns LLM parameters schema * @reference https://platform.openai.com/docs/guides/function-calling * @reference https://platform.openai.com/docs/guides/structured-outputs */ export declare function parameters(): never; /** * TypeScript parameters to LLM parameters schema. * * Creates an LLM (Large Language Model) parameters schema, a type metadata that is used in the * [LLM function calling](https://platform.openai.com/docs/guides/function-calling) * and [LLM structured outputs](https://platform.openai.com/docs/guides/structured-outputs), * from a TypeScript parameters type. * * For references, LLM identifies only keyworded arguments, not positional arguments. * Therefore, the TypeScript parameters type must be an object type, and its properties * must be static. If dynamic properties are, it would be compilation error. * * Also, such parameters type can be utilized not only for the LLM function calling, * but also for the LLM structured outputs. The LLM structured outputs is a feature * that LLM (Large Language Model) can generate a structured output, not only a plain * text, by filling the parameters from the conversation (maybe chatting text) with user * (human). * * Here is the list of available `Model` types with their corresponding LLM schema. * Reading the following list, and determine the `Model` type considering the * characteristics of the target LLM provider. * * - LLM provider schemas * - `chatgpt`: [`IChatGptSchema`](https://github.com/samchon/openapi/blob/master/src/structures/IChatGptSchema.ts) * - `claude`: [`IClaudeSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `deepseek`: [`IDeepSeekSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `gemini`: [`IGeminiSchema`](https://samchon.github.io/openapi/api/types/IGeminiSchema-1.html) * - `llama`: [`ILlamaSchema`](https://samchon.github.io/openapi/api/types/ILlamaSchema-1.html) * - Midldle layer schemas * - `3.0`: [`ILlmSchemaV3`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3-1.html) * - `3.1`: [`ILlmSchemaV3_1`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3_1-1.html) * * @template Parameters Target parameters type * @template Model LLM schema model * @template Config Configuration of LLM schema composition * @returns LLM parameters schema * @reference https://platform.openai.com/docs/guides/function-calling * @reference https://platform.openai.com/docs/guides/structured-outputs */ export declare function parameters<Parameters extends Record<string, any>, Model extends ILlmSchema.Model, Config extends Partial<ILlmSchema.ModelConfig[Model]> = {}>(): ILlmSchema.ModelParameters[Model]; /** * > You must configure the generic argument `T`. * * TypeScript type to LLM type schema. * * Creates an LLM (Large Language Model) type schema, a type metadata that is used in the * [LLM function calling](@reference https://platform.openai.com/docs/guides/function-calling), * from a TypeScript type. * * The returned {@link ILlmSchema} type would be specified by the `Model` argument, * and here is the list of available `Model` types with their corresponding LLM schema. * Reading the following list, and determine the `Model` type considering the * characteristics of the target LLM provider. * * - LLM provider schemas * - `chatgpt`: [`IChatGptSchema`](https://github.com/samchon/openapi/blob/master/src/structures/IChatGptSchema.ts) * - `claude`: [`IClaudeSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `deepseek`: [`IDeepSeekSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `gemini`: [`IGeminiSchema`](https://samchon.github.io/openapi/api/types/IGeminiSchema-1.html) * - `llama`: [`ILlamaSchema`](https://samchon.github.io/openapi/api/types/ILlamaSchema-1.html) * - Midldle layer schemas * - `3.0`: [`ILlmSchemaV3`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3-1.html) * - `3.1`: [`ILlmSchemaV3_1`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3_1-1.html) * * If you actually want to perform the LLM function calling with TypeScript functions, * you can do it with the {@link application} function. Otherwise you hope to perform the * structured output, {@link parameters} function is better. Let's enjoy the LLM function calling * and structured output with the native TypeScript functions and types. * * > **What LLM function calling is? * > * > LLM (Large Language Model) selects property function and fill the arguments, * > but actual function call execution is not by LLM, but by you. * > * > In nowadays, most LLM (Large Language Model) like OpenAI are supporting * > "function calling" feature. The "function calling" means that LLM automatically selects * > a proper function and compose parameter values from the user's chatting text. * > * > When LLM selects the proper function and its arguments, you just call the function * > with the arguments. And then informs the return value to the LLM by system prompt, * > LLM will continue the next conversation based on the return value. * * @template T Target type * @template Model LLM schema model * @template Config Configuration of LLM schema composition * @returns LLM schema * @reference https://platform.openai.com/docs/guides/function-calling * @reference https://platform.openai.com/docs/guides/structured-outputs * @author Jeongho Nam - https://github.com/samchon */ export declare function schema(): never; /** * TypeScript type to LLM type schema. * * Creates an LLM (Large Language Model) type schema, a type metadata that is used in the * [LLM function calling](@reference https://platform.openai.com/docs/guides/function-calling), * from a TypeScript type. * * The returned {@link ILlmSchema} type would be specified by the `Model` argument, * and here is the list of available `Model` types with their corresponding LLM schema: * * - LLM provider schemas * - `chatgpt`: [`IChatGptSchema`](https://github.com/samchon/openapi/blob/master/src/structures/IChatGptSchema.ts) * - `claude`: [`IClaudeSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `deepseek`: [`IDeepSeekSchema`](https://samchon.github.io/openapi/api/types/IClaudeSchema-1.html) * - `gemini`: [`IGeminiSchema`](https://samchon.github.io/openapi/api/types/IGeminiSchema-1.html) * - `llama`: [`ILlamaSchema`](https://samchon.github.io/openapi/api/types/ILlamaSchema-1.html) * - Midldle layer schemas * - `3.0`: [`ILlmSchemaV3`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3-1.html) * - `3.1`: [`ILlmSchemaV3_1`](https://samchon.github.io/openapi/api/types/ILlmSchemaV3_1-1.html) * * If you actually want to perform the LLM function calling with TypeScript functions, * you can do it with the {@link application} function. Otherwise you hope to perform the * structured output, {@link parameters} function is better. Let's enjoy the LLM function calling * and structured output with the native TypeScript functions and types. * * > **What LLM function calling is? * > * > LLM (Large Language Model) selects property function and fill the arguments, * > but actual function call execution is not by LLM, but by you. * > * > In nowadays, most LLM (Large Language Model) like OpenAI are supporting * > "function calling" feature. The "function calling" means that LLM automatically selects * > a proper function and compose parameter values from the user's chatting text. * > * > When LLM selects the proper function and its arguments, you just call the function * > with the arguments. And then informs the return value to the LLM by system prompt, * > LLM will continue the next conversation based on the return value. * * @template T Target type * @template Model LLM schema model * @template Config Configuration of LLM schema composition * @returns LLM schema * @reference https://platform.openai.com/docs/guides/function-calling * @reference https://platform.openai.com/docs/guides/structured-outputs * @author Jeongho Nam - https://github.com/samchon */ export declare function schema<T, Model extends ILlmSchema.Model, Config extends Partial<ILlmSchema.ModelConfig[Model]> = {}>(...$defs: Extract<ILlmSchema.ModelSchema[Model], { $ref: string; }> extends never ? [] : [Record<string, ILlmSchema.ModelSchema[Model]>]): ILlmSchema.ModelSchema[Model];