UNPKG

typia

Version:

Superfast runtime validators with only one line

362 lines (361 loc) 16.6 kB
import { ILlmApplication, ILlmController, ILlmSchema } from "@samchon/openapi"; /** * > You must configure the generic argument `Class`. * * TypeScript functions to LLM function calling controller. * * Creates a controller of LLM (Large Language Model) function calling from a * TypeScript class or interface type containing the target functions to be * called by the LLM function calling feature. The returned controller contains * not only the {@link application} of * {@link ILlmFunction function calling schemas}, but also the * {@link ILlmController.execute executor} of the functions. * * If you put the returned {@link ILlmController} to the LLM provider like * [OpenAI (ChatGPT)](https://openai.com/), the LLM will automatically select * the proper function and fill its arguments from the conversation (maybe * chatting text) with user (human). And you can actually call the function by * using {@link ILlmController.execute} property. This is the concept of the LLM * function calling. * * Here is an example of using `typia.llm.controller()` function for AI agent * development of performing such AI function calling to mobile API classes * through this `typia` and external `@agentica` libraries. * * ```typescript * import { Agentica } from "@agentica/core"; * import typia from "typia"; * * const agentica = new Agentica({ * model: "chatgpt", * vendor: { * api: new OpenAI({ apiKey: "********" }), * model: "gpt-4o-mini", * }, * controllers: [ * typia.llm.controller<ReactNativeFileSystem>( * "filesystem", * new ReactNativeFileSystem(), * ), * typia.llm.controller<ReactNativeGallery>( * "gallery", * new ReactNativeGallery(), * ), * ], * }); * await agentica.conversate( * "Organize photo collection and sort them into appropriate folders.", * ); * ``` * * @author Jeongho Nam - https://github.com/samchon * @template Class Target class or interface type collecting the functions to * call * @template Config Configuration of LLM schema composition * @param name Identifier name of the controller * @param execute Executor instance * @param config Options for the LLM application construction * @returns Controller of LLM function calling * @reference https://wrtnlabs.io/agentica/docs/core/controller/typescript/ */ export declare function controller(name: string, execute: object, config?: Partial<Pick<ILlmApplication.IConfig<any>, "separate" | "validate">>): never; /** * TypeScript functions to LLM function calling controller. * * Creates a controller of LLM (Large Language Model) function calling from a * TypeScript class or interface type containing the target functions to be * called by the LLM function calling feature. The returned controller contains * not only the {@link application} of * {@link ILlmFunction function calling schemas}, but also the * {@link ILlmController.execute executor} of the functions. * * If you put the returned {@link ILlmController} to the LLM provider like * [OpenAI (ChatGPT)](https://openai.com/), the LLM will automatically select * the proper function and fill its arguments from the conversation (maybe * chatting text) with user (human). And you can actually call the function by * using {@link ILlmController.execute} property. This is the concept of the LLM * function calling. * * Here is an example of using `typia.llm.controller()` function for AI agent * development of performing such AI function calling to mobile API classes * through this `typia` and external `@agentica` libraries. * * ```typescript * import { Agentica } from "@agentica/core"; * import typia from "typia"; * * const agentica = new Agentica({ * model: "chatgpt", * vendor: { * api: new OpenAI({ apiKey: "********" }), * model: "gpt-4o-mini", * }, * controllers: [ * typia.llm.controller<ReactNativeFileSystem>( * "filesystem", * new ReactNativeFileSystem(), * ), * typia.llm.controller<ReactNativeGallery>( * "gallery", * new ReactNativeGallery(), * ), * ], * }); * await agentica.conversate( * "Organize photo collection and sort them into appropriate folders.", * ); * ``` * * @author Jeongho Nam - https://github.com/samchon * @template Class Target class or interface type collecting the functions to * call * @template Config Configuration of LLM schema composition * @param name Identifier name of the controller * @param execute Executor instance * @param config Options for the LLM application construction * @returns Controller of LLM function calling * @reference https://wrtnlabs.io/agentica/docs/core/controller/typescript/ */ export declare function controller<Class extends Record<string, any>, Config extends Partial<ILlmSchema.IConfig & { /** * Whether to disallow superfluous properties or not. * * If configure as `true`, {@link validateEquals} function would be used * for validation feedback, which is more strict than {@link validate} * function. * * @default false */ equals: boolean; }> = {}>(name: string, execute: Class, config?: Partial<Pick<ILlmApplication.IConfig<Class>, "separate" | "validate">>): ILlmController<Class>; /** * > You must configure the generic argument `Class`. * * TypeScript functions to LLM function calling application. * * Creates an application of LLM (Large Language Model) function calling * application from a TypeScript class or interface type containing the target * functions to be called by the LLM function calling feature. * * If you put the returned {@link ILlmApplication.functions} objects to the LLM * provider like [OpenAI (ChatGPT)](https://openai.com/), the LLM will * automatically select the proper function and fill its arguments from the * conversation (maybe chatting text) with user (human). This is the concept of * the LLM function calling. * * By the way, there can be some parameters (or their nested properties) which * must be composed by human, not by LLM. File uploading feature or some * sensitive information like security keys (password) are the examples. In that * case, you can separate the function parameters to both LLM and human sides by * configuring the {@link ILlmApplication.IConfig.separate} property. The * separated parameters are assigned to the {@link ILlmFunction.separated} * property. * * For reference, the actual function call execution is not by LLM, but by you. * When the LLM selects the proper function and fills the arguments, you just * call the function with the LLM prepared arguments. And then informs the * return value to the LLM by system prompt. The LLM will continue the next * conversation based on the return value. * * Additionally, if you've configured {@link ILlmApplication.IConfig.separate}, * so that the parameters are separated to human and LLM sides, you can merge * these human and LLM sides' parameters into one through * {@link HttpLlm.mergeParameters} before the actual LLM function call * execution. * * @author Jeongho Nam - https://github.com/samchon * @template Class Target class or interface type collecting the functions to * call * @template Config Configuration of LLM schema composition * @param config Options for the LLM application construction * @returns Application of LLM function calling schemas * @reference https://platform.openai.com/docs/guides/function-calling */ export declare function application(config?: Partial<Pick<ILlmApplication.IConfig<any>, "separate" | "validate">>): never; /** * TypeScript functions to LLM function calling application. * * Creates an application of LLM (Large Language Model) function calling * application from a TypeScript class or interface type containing the target * functions to be called by the LLM function calling feature. * * If you put the returned {@link ILlmApplication.functions} objects to the LLM * provider like [OpenAI (ChatGPT)](https://openai.com/), the LLM will * automatically select the proper function and fill its arguments from the * conversation (maybe chatting text) with user (human). This is the concept of * the LLM function calling. * * By the way, there can be some parameters (or their nested properties) which * must be composed by human, not by LLM. File uploading feature or some * sensitive information like security keys (password) are the examples. In that * case, you can separate the function parameters to both LLM and human sides by * configuring the {@link ILlmApplication.IConfig.separate} property. The * separated parameters are assigned to the {@link ILlmFunction.separated} * property. * * For reference, the actual function call execution is not by LLM, but by you. * When the LLM selects the proper function and fills the arguments, you just * call the function with the LLM prepared arguments. And then informs the * return value to the LLM by system prompt. The LLM will continue the next * conversation based on the return value. * * Additionally, if you've configured {@link ILlmApplication.IConfig.separate}, * so that the parameters are separated to human and LLM sides, you can merge * these human and LLM sides' parameters into one through * {@link HttpLlm.mergeParameters} before the actual LLM function call * execution. * * @author Jeongho Nam - https://github.com/samchon * @template Class Target class or interface type collecting the functions to * call * @template Config Configuration of LLM schema composition * @param config Options for the LLM application construction * @returns Application of LLM function calling schemas * @reference https://platform.openai.com/docs/guides/function-calling */ export declare function application<Class extends Record<string, any>, Config extends Partial<ILlmSchema.IConfig & { /** * Whether to disallow superfluous properties or not. * * If configure as `true`, {@link validateEquals} function would be used * for validation feedback, which is more strict than {@link validate} * function. * * @default false */ equals: boolean; }> = {}>(config?: Partial<Pick<ILlmApplication.IConfig<Class>, "separate" | "validate">>): ILlmApplication<Class>; /** * > You must configure the generic argument `Parameters`. * * TypeScript parameters to LLM parameters schema. * * Creates an LLM (Large Language Model) parameters schema, a type metadata that * is used in the [LLM function * calling](https://platform.openai.com/docs/guides/function-calling) and [LLM * structured * outputs](https://platform.openai.com/docs/guides/structured-outputs), from a * TypeScript parameters type. * * For references, LLM identifies only keyworded arguments, not positional * arguments. Therefore, the TypeScript parameters type must be an object type, * and its properties must be static. If dynamic properties are, it will be * compilation error. * * Also, such parameters type can be utilized not only for the LLM function * calling, but also for the LLM structured outputs. The LLM structured outputs * is a feature that LLM (Large Language Model) can generate a structured * output, not only a plain text, by filling the parameters from the * conversation (maybe chatting text) with user (human). * * @template Parameters Target parameters type * @template Config Configuration of LLM schema composition * @returns LLM parameters schema * @reference https://platform.openai.com/docs/guides/function-calling * @reference https://platform.openai.com/docs/guides/structured-outputs */ export declare function parameters(): never; /** * TypeScript parameters to LLM parameters schema. * * Creates an LLM (Large Language Model) parameters schema, a type metadata that * is used in the [LLM function * calling](https://platform.openai.com/docs/guides/function-calling) and [LLM * structured * outputs](https://platform.openai.com/docs/guides/structured-outputs), from a * TypeScript parameters type. * * For references, LLM identifies only keyworded arguments, not positional * arguments. Therefore, the TypeScript parameters type must be an object type, * and its properties must be static. If dynamic properties are, it will be * compilation error. * * Also, such parameters type can be utilized not only for the LLM function * calling, but also for the LLM structured outputs. The LLM structured outputs * is a feature that LLM (Large Language Model) can generate a structured * output, not only a plain text, by filling the parameters from the * conversation (maybe chatting text) with user (human). * * @template Parameters Target parameters type * @template Config Configuration of LLM schema composition * @returns LLM parameters schema * @reference https://platform.openai.com/docs/guides/function-calling * @reference https://platform.openai.com/docs/guides/structured-outputs */ export declare function parameters<Parameters extends Record<string, any>, Config extends Partial<ILlmSchema.IConfig> = {}>(): ILlmSchema.IParameters; /** * > You must configure the generic argument `T`. * * TypeScript type to LLM type schema. * * Creates an LLM (Large Language Model) type schema, a type metadata that is * used in the [LLM function calling](@reference * https://platform.openai.com/docs/guides/function-calling), from a TypeScript * type. * * If you actually want to perform the LLM function calling with TypeScript * functions, you can do it with the {@link application} function. Otherwise you * hope to perform the structured output, {@link parameters} function is better. * Let's enjoy the LLM function calling and structured output with the native * TypeScript functions and types. * * > **What LLM function calling is? * * > LLM (Large Language Model) selects property function and fill the arguments, * > but actual function call execution is not by LLM, but by you. * * > In nowadays, most LLM (Large Language Model) like OpenAI are supporting * > "function calling" feature. The "function calling" means that LLM * > automatically selects a proper function and compose parameter values from the * > user's chatting text. * * > When LLM selects the proper function and its arguments, you just call the * > function with the arguments. And then informs the return value to the LLM by * > system prompt, LLM will continue the next conversation based on the return * > value. * * @author Jeongho Nam - https://github.com/samchon * @template T Target type * @template Config Configuration of LLM schema composition * @returns LLM schema * @reference https://platform.openai.com/docs/guides/function-calling * @reference https://platform.openai.com/docs/guides/structured-outputs */ export declare function schema(): never; /** * TypeScript type to LLM type schema. * * Creates an LLM (Large Language Model) type schema, a type metadata that is * used in the [LLM function calling](@reference * https://platform.openai.com/docs/guides/function-calling), from a TypeScript * type. * * If you actually want to perform the LLM function calling with TypeScript * functions, you can do it with the {@link application} function. Otherwise you * hope to perform the structured output, {@link parameters} function is better. * Let's enjoy the LLM function calling and structured output with the native * TypeScript functions and types. * * > **What LLM function calling is? * * > LLM (Large Language Model) selects property function and fill the arguments, * > but actual function call execution is not by LLM, but by you. * * > In nowadays, most LLM (Large Language Model) like OpenAI are supporting * > "function calling" feature. The "function calling" means that LLM * > automatically selects a proper function and compose parameter values from the * > user's chatting text. * * > When LLM selects the proper function and its arguments, you just call the * > function with the arguments. And then informs the return value to the LLM by * > system prompt, LLM will continue the next conversation based on the return * > value. * * @author Jeongho Nam - https://github.com/samchon * @template T Target type * @template Config Configuration of LLM schema composition * @returns LLM schema * @reference https://platform.openai.com/docs/guides/function-calling * @reference https://platform.openai.com/docs/guides/structured-outputs */ export declare function schema<T, Config extends Partial<ILlmSchema.IConfig> = {}>($defs: Record<string, ILlmSchema>): ILlmSchema;