UNPKG

typescript-closure-tools

Version:

Command-line tools to convert closure-style JSDoc annotations to typescript, and to convert typescript sources to closure externs files

261 lines (234 loc) 11.6 kB
/// <reference path="../../../globals.d.ts" /> declare module goog.math { /** * Returns a random integer greater than or equal to 0 and less than {@code a}. * @param {number} a The upper bound for the random integer (exclusive). * @return {number} A random integer N such that 0 <= N < a. */ function randomInt(a: number): number; /** * Returns a random number greater than or equal to {@code a} and less than * {@code b}. * @param {number} a The lower bound for the random number (inclusive). * @param {number} b The upper bound for the random number (exclusive). * @return {number} A random number N such that a <= N < b. */ function uniformRandom(a: number, b: number): number; /** * Takes a number and clamps it to within the provided bounds. * @param {number} value The input number. * @param {number} min The minimum value to return. * @param {number} max The maximum value to return. * @return {number} The input number if it is within bounds, or the nearest * number within the bounds. */ function clamp(value: number, min: number, max: number): number; /** * The % operator in JavaScript returns the remainder of a / b, but differs from * some other languages in that the result will have the same sign as the * dividend. For example, -1 % 8 == -1, whereas in some other languages * (such as Python) the result would be 7. This function emulates the more * correct modulo behavior, which is useful for certain applications such as * calculating an offset index in a circular list. * * @param {number} a The dividend. * @param {number} b The divisor. * @return {number} a % b where the result is between 0 and b (either 0 <= x < b * or b < x <= 0, depending on the sign of b). */ function modulo(a: number, b: number): number; /** * Performs linear interpolation between values a and b. Returns the value * between a and b proportional to x (when x is between 0 and 1. When x is * outside this range, the return value is a linear extrapolation). * @param {number} a A number. * @param {number} b A number. * @param {number} x The proportion between a and b. * @return {number} The interpolated value between a and b. */ function lerp(a: number, b: number, x: number): number; /** * Tests whether the two values are equal to each other, within a certain * tolerance to adjust for floating point errors. * @param {number} a A number. * @param {number} b A number. * @param {number=} opt_tolerance Optional tolerance range. Defaults * to 0.000001. If specified, should be greater than 0. * @return {boolean} Whether {@code a} and {@code b} are nearly equal. */ function nearlyEquals(a: number, b: number, opt_tolerance?: number): boolean; /** * Normalizes an angle to be in range [0-360). Angles outside this range will * be normalized to be the equivalent angle with that range. * @param {number} angle Angle in degrees. * @return {number} Standardized angle. */ function standardAngle(angle: number): number; /** * Normalizes an angle to be in range [0-2*PI). Angles outside this range will * be normalized to be the equivalent angle with that range. * @param {number} angle Angle in radians. * @return {number} Standardized angle. */ function standardAngleInRadians(angle: number): number; /** * Converts degrees to radians. * @param {number} angleDegrees Angle in degrees. * @return {number} Angle in radians. */ function toRadians(angleDegrees: number): number; /** * Converts radians to degrees. * @param {number} angleRadians Angle in radians. * @return {number} Angle in degrees. */ function toDegrees(angleRadians: number): number; /** * For a given angle and radius, finds the X portion of the offset. * @param {number} degrees Angle in degrees (zero points in +X direction). * @param {number} radius Radius. * @return {number} The x-distance for the angle and radius. */ function angleDx(degrees: number, radius: number): number; /** * For a given angle and radius, finds the Y portion of the offset. * @param {number} degrees Angle in degrees (zero points in +X direction). * @param {number} radius Radius. * @return {number} The y-distance for the angle and radius. */ function angleDy(degrees: number, radius: number): number; /** * Computes the angle between two points (x1,y1) and (x2,y2). * Angle zero points in the +X direction, 90 degrees points in the +Y * direction (down) and from there we grow clockwise towards 360 degrees. * @param {number} x1 x of first point. * @param {number} y1 y of first point. * @param {number} x2 x of second point. * @param {number} y2 y of second point. * @return {number} Standardized angle in degrees of the vector from * x1,y1 to x2,y2. */ function angle(x1: number, y1: number, x2: number, y2: number): number; /** * Computes the difference between startAngle and endAngle (angles in degrees). * @param {number} startAngle Start angle in degrees. * @param {number} endAngle End angle in degrees. * @return {number} The number of degrees that when added to * startAngle will result in endAngle. Positive numbers mean that the * direction is clockwise. Negative numbers indicate a counter-clockwise * direction. * The shortest route (clockwise vs counter-clockwise) between the angles * is used. * When the difference is 180 degrees, the function returns 180 (not -180) * angleDifference(30, 40) is 10, and angleDifference(40, 30) is -10. * angleDifference(350, 10) is 20, and angleDifference(10, 350) is -20. */ function angleDifference(startAngle: number, endAngle: number): number; /** * Returns the sign of a number as per the "sign" or "signum" function. * @param {number} x The number to take the sign of. * @return {number} -1 when negative, 1 when positive, 0 when 0. */ function sign(x: number): number; /** * JavaScript implementation of Longest Common Subsequence problem. * http://en.wikipedia.org/wiki/Longest_common_subsequence * * Returns the longest possible array that is subarray of both of given arrays. * * @param {Array.<Object>} array1 First array of objects. * @param {Array.<Object>} array2 Second array of objects. * @param {Function=} opt_compareFn Function that acts as a custom comparator * for the array ojects. Function should return true if objects are equal, * otherwise false. * @param {Function=} opt_collectorFn Function used to decide what to return * as a result subsequence. It accepts 2 arguments: index of common element * in the first array and index in the second. The default function returns * element from the first array. * @return {!Array.<Object>} A list of objects that are common to both arrays * such that there is no common subsequence with size greater than the * length of the list. */ function longestCommonSubsequence(array1: Object[], array2: Object[], opt_compareFn?: Function, opt_collectorFn?: Function): Object[]; /** * Returns the sum of the arguments. * @param {...number} var_args Numbers to add. * @return {number} The sum of the arguments (0 if no arguments were provided, * {@code NaN} if any of the arguments is not a valid number). */ function sum(...var_args: number[]): number; /** * Returns the arithmetic mean of the arguments. * @param {...number} var_args Numbers to average. * @return {number} The average of the arguments ({@code NaN} if no arguments * were provided or any of the arguments is not a valid number). */ function average(...var_args: number[]): number; /** * Returns the unbiased sample variance of the arguments. For a definition, * see e.g. http://en.wikipedia.org/wiki/Variance * @param {...number} var_args Number samples to analyze. * @return {number} The unbiased sample variance of the arguments (0 if fewer * than two samples were provided, or {@code NaN} if any of the samples is * not a valid number). */ function sampleVariance(...var_args: number[]): number; /** * Returns the sample standard deviation of the arguments. For a definition of * sample standard deviation, see e.g. * http://en.wikipedia.org/wiki/Standard_deviation * @param {...number} var_args Number samples to analyze. * @return {number} The sample standard deviation of the arguments (0 if fewer * than two samples were provided, or {@code NaN} if any of the samples is * not a valid number). */ function standardDeviation(...var_args: number[]): number; /** * Returns whether the supplied number represents an integer, i.e. that is has * no fractional component. No range-checking is performed on the number. * @param {number} num The number to test. * @return {boolean} Whether {@code num} is an integer. */ function isInt(num: number): boolean; /** * Returns whether the supplied number is finite and not NaN. * @param {number} num The number to test. * @return {boolean} Whether {@code num} is a finite number. */ function isFiniteNumber(num: number): boolean; /** * Returns the precise value of floor(log10(num)). * Simpler implementations didn't work because of floating point rounding * errors. For example * <ul> * <li>Math.floor(Math.log(num) / Math.LN10) is off by one for num == 1e+3. * <li>Math.floor(Math.log(num) * Math.LOG10E) is off by one for num == 1e+15. * <li>Math.floor(Math.log10(num)) is off by one for num == 1e+15 - 1. * </ul> * @param {number} num A floating point number. * @return {number} Its logarithm to base 10 rounded down to the nearest * integer if num > 0. -Infinity if num == 0. NaN if num < 0. */ function log10Floor(num: number): number; /** * A tweaked variant of {@code Math.floor} which tolerates if the passed number * is infinitesimally smaller than the closest integer. It often happens with * the results of floating point calculations because of the finite precision * of the intermediate results. For example {@code Math.floor(Math.log(1000) / * Math.LN10) == 2}, not 3 as one would expect. * @param {number} num A number. * @param {number=} opt_epsilon An infinitesimally small positive number, the * rounding error to tolerate. * @return {number} The largest integer less than or equal to {@code num}. */ function safeFloor(num: number, opt_epsilon?: number): number; /** * A tweaked variant of {@code Math.ceil}. See {@code goog.math.safeFloor} for * details. * @param {number} num A number. * @param {number=} opt_epsilon An infinitesimally small positive number, the * rounding error to tolerate. * @return {number} The smallest integer greater than or equal to {@code num}. */ function safeCeil(num: number, opt_epsilon?: number): number; }