ts2fable
Version:
TypeScript definition files parser for fable-compiler
1,914 lines (1,575 loc) • 351 kB
JavaScript
#!/usr/bin/env node
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('path'), require('fs'), require('typescript')) :
typeof define === 'function' && define.amd ? define(['exports', 'path', 'fs', 'typescript'], factory) :
(global = global || self, factory(global.ts2fable = {}, global.path$$1, global.fs, global.typescript));
}(this, (function (exports, path$$1, fs, typescript) { 'use strict';
// tslint:disable:ban-types
function isDisposable(x) {
return x != null && typeof x.Dispose === "function";
}
function tryGetValue(map, key, defaultValue) {
return map.has(key) ? [true, map.get(key)] : [false, defaultValue];
}
function addToSet(v, set) {
if (set.has(v)) {
return false;
}
set.add(v);
return true;
}
class Lazy {
constructor(factory) {
this.factory = factory;
this.isValueCreated = false;
}
get Value() {
if (!this.isValueCreated) {
this.createdValue = this.factory();
this.isValueCreated = true;
}
return this.createdValue;
}
get IsValueCreated() {
return this.isValueCreated;
}
}
function dateOffset(date) {
const date1 = date;
return typeof date1.offset === "number" ? date1.offset : date.kind === 1
/* UTC */
? 0 : date.getTimezoneOffset() * -60000;
}
function int32ToString(i, radix) {
i = i < 0 && radix != null && radix !== 10 ? 0xFFFFFFFF + i + 1 : i;
return i.toString(radix);
}
class ObjectRef {
static id(o) {
if (!ObjectRef.idMap.has(o)) {
ObjectRef.idMap.set(o, ++ObjectRef.count);
}
return ObjectRef.idMap.get(o);
}
}
ObjectRef.idMap = new WeakMap();
ObjectRef.count = 0;
function stringHash(s) {
let i = 0;
let h = 5381;
const len = s.length;
while (i < len) {
h = h * 33 ^ s.charCodeAt(i++);
}
return h;
}
function numberHash(x) {
return x * 2654435761 | 0;
} // From https://stackoverflow.com/a/37449594
function combineHashCodes(hashes) {
if (hashes.length === 0) {
return 0;
}
return hashes.reduce((h1, h2) => {
return (h1 << 5) + h1 ^ h2;
});
}
function identityHash(x) {
if (x == null) {
return 0;
}
switch (typeof x) {
case "boolean":
return x ? 1 : 0;
case "number":
return numberHash(x);
case "string":
return stringHash(x);
default:
return numberHash(ObjectRef.id(x));
}
}
function structuralHash(x) {
if (x == null) {
return 0;
}
switch (typeof x) {
case "boolean":
return x ? 1 : 0;
case "number":
return numberHash(x);
case "string":
return stringHash(x);
default:
{
if (typeof x.GetHashCode === "function") {
return x.GetHashCode();
} else if (isArray(x)) {
const ar = x;
const len = ar.length;
const hashes = new Array(len);
for (let i = 0; i < len; i++) {
hashes[i] = structuralHash(ar[i]);
}
return combineHashCodes(hashes);
} else {
return stringHash(String(x));
}
}
}
}
function isArray(x) {
return Array.isArray(x) || ArrayBuffer.isView(x);
}
function equalArraysWith(x, y, eq) {
if (x == null) {
return y == null;
}
if (y == null) {
return false;
}
if (x.length !== y.length) {
return false;
}
for (let i = 0; i < x.length; i++) {
if (!eq(x[i], y[i])) {
return false;
}
}
return true;
}
function equalArrays(x, y) {
return equalArraysWith(x, y, equals);
} // export function equalObjects(x: { [k: string]: any }, y: { [k: string]: any }): boolean {
// if (x == null) { return y == null; }
// if (y == null) { return false; }
// const xKeys = Object.keys(x);
// const yKeys = Object.keys(y);
// if (xKeys.length !== yKeys.length) {
// return false;
// }
// xKeys.sort();
// yKeys.sort();
// for (let i = 0; i < xKeys.length; i++) {
// if (xKeys[i] !== yKeys[i] || !equals(x[xKeys[i]], y[yKeys[i]])) {
// return false;
// }
// }
// return true;
// }
function equals(x, y) {
if (x === y) {
return true;
} else if (x == null) {
return y == null;
} else if (y == null) {
return false;
} else if (typeof x !== "object") {
return false;
} else if (typeof x.Equals === "function") {
return x.Equals(y);
} else if (isArray(x)) {
return isArray(y) && equalArrays(x, y);
} else if (x instanceof Date) {
return y instanceof Date && compareDates(x, y) === 0;
} else {
return false;
}
}
function compareDates(x, y) {
let xtime;
let ytime; // DateTimeOffset and DateTime deals with equality differently.
if ("offset" in x && "offset" in y) {
xtime = x.getTime();
ytime = y.getTime();
} else {
xtime = x.getTime() + dateOffset(x);
ytime = y.getTime() + dateOffset(y);
}
return xtime === ytime ? 0 : xtime < ytime ? -1 : 1;
}
function comparePrimitives(x, y) {
return x === y ? 0 : x < y ? -1 : 1;
}
function compareArraysWith(x, y, comp) {
if (x == null) {
return y == null ? 0 : 1;
}
if (y == null) {
return -1;
}
if (x.length !== y.length) {
return x.length < y.length ? -1 : 1;
}
for (let i = 0, j = 0; i < x.length; i++) {
j = comp(x[i], y[i]);
if (j !== 0) {
return j;
}
}
return 0;
}
function compareArrays(x, y) {
return compareArraysWith(x, y, compare);
}
function compare(x, y) {
if (x === y) {
return 0;
} else if (x == null) {
return y == null ? 0 : -1;
} else if (y == null) {
return 1;
} else if (typeof x !== "object") {
return x < y ? -1 : 1;
} else if (typeof x.CompareTo === "function") {
return x.CompareTo(y);
} else if (isArray(x)) {
return isArray(y) && compareArrays(x, y);
} else if (x instanceof Date) {
return y instanceof Date && compareDates(x, y);
} else {
return 1;
}
}
// or Dictionaries so we need a runtime check (see #1120)
function count(col) {
if (isArray(col)) {
return col.length;
} else {
let count = 0;
for (const _ of col) {
count++;
}
return count;
}
}
const CURRIED_KEY = "__CURRIED__";
function partialApply(arity, f, args) {
if (f == null) {
return null;
} else if (CURRIED_KEY in f) {
f = f[CURRIED_KEY];
for (let i = 0; i < args.length; i++) {
f = f(args[i]);
}
return f;
} else {
switch (arity) {
case 1:
// Wrap arguments to make sure .concat doesn't destruct arrays. Example
// [1,2].concat([3,4],5) --> [1,2,3,4,5] // fails
// [1,2].concat([[3,4],5]) --> [1,2,[3,4],5] // ok
return a1 => f.apply(null, args.concat([a1]));
case 2:
return a1 => a2 => f.apply(null, args.concat([a1, a2]));
case 3:
return a1 => a2 => a3 => f.apply(null, args.concat([a1, a2, a3]));
case 4:
return a1 => a2 => a3 => a4 => f.apply(null, args.concat([a1, a2, a3, a4]));
case 5:
return a1 => a2 => a3 => a4 => a5 => f.apply(null, args.concat([a1, a2, a3, a4, a5]));
case 6:
return a1 => a2 => a3 => a4 => a5 => a6 => f.apply(null, args.concat([a1, a2, a3, a4, a5, a6]));
case 7:
return a1 => a2 => a3 => a4 => a5 => a6 => a7 => f.apply(null, args.concat([a1, a2, a3, a4, a5, a6, a7]));
case 8:
return a1 => a2 => a3 => a4 => a5 => a6 => a7 => a8 => f.apply(null, args.concat([a1, a2, a3, a4, a5, a6, a7, a8]));
default:
throw new Error("Partially applying to more than 8-arity is not supported: " + arity);
}
}
}
function addToDict(dict, k, v) {
if (dict.has(k)) {
throw new Error("An item with the same key has already been added. Key: " + k);
}
dict.set(k, v);
}
function getItemFromDict(map, key) {
if (map.has(key)) {
return map.get(key);
} else {
throw new Error(`The given key '${key}' was not present in the dictionary.`);
}
}
// https://github.com/MikeMcl/big.js/blob/01b3ce3a6b0ba7b42442ea48ec4ffc88d1669ec4/big.mjs
var P = {
GetHashCode() {
return combineHashCodes([this.s, this.e].concat(this.c));
},
Equals(x) {
return !this.cmp(x);
},
CompareTo(x) {
return this.cmp(x);
}
};
/*
* big.js v5.2.2
* A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
* Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
* https://github.com/MikeMcl/big.js/LICENCE
*/
/************************************** EDITABLE DEFAULTS *****************************************/
// The default values below must be integers within the stated ranges.
/*
* The maximum number of decimal places (DP) of the results of operations involving division:
* div and sqrt, and pow with negative exponents.
*/
var DP = 28,
// 0 to MAX_DP
/*
* The rounding mode (RM) used when rounding to the above decimal places.
*
* 0 Towards zero (i.e. truncate, no rounding). (ROUND_DOWN)
* 1 To nearest neighbour. If equidistant, round up. (ROUND_HALF_UP)
* 2 To nearest neighbour. If equidistant, to even. (ROUND_HALF_EVEN)
* 3 Away from zero. (ROUND_UP)
*/
RM = 1,
// 0, 1, 2 or 3
// The maximum value of DP and Big.DP.
MAX_DP = 1E6,
// 0 to 1000000
// The maximum magnitude of the exponent argument to the pow method.
MAX_POWER = 1E6,
// 1 to 1000000
/*
* The negative exponent (NE) at and beneath which toString returns exponential notation.
* (JavaScript numbers: -7)
* -1000000 is the minimum recommended exponent value of a Big.
*/
NE = -29,
// 0 to -1000000
/*
* The positive exponent (PE) at and above which toString returns exponential notation.
* (JavaScript numbers: 21)
* 1000000 is the maximum recommended exponent value of a Big.
* (This limit is not enforced or checked.)
*/
PE = 29,
// 0 to 1000000
/**************************************************************************************************/
// Error messages.
NAME = "[big.js] ",
INVALID = NAME + "Invalid ",
INVALID_DP = INVALID + "decimal places",
INVALID_RM = INVALID + "rounding mode",
DIV_BY_ZERO = NAME + "Division by zero",
UNDEFINED = void 0,
NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;
/*
* Create and return a Big constructor.
*
*/
function _Big_() {
/*
* The Big constructor and exported function.
* Create and return a new instance of a Big number object.
*
* n {number|string|Big} A numeric value.
*/
function Big(n) {
var x = this; // Enable constructor usage without new.
if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n); // Duplicate.
if (n instanceof Big) {
x.s = n.s;
x.e = n.e;
x.c = n.c.slice();
normalize(x);
} else {
parse(x, n);
}
/*
* Retain a reference to this Big constructor, and shadow Big.prototype.constructor which
* points to Object.
*/
x.constructor = Big;
}
Big.prototype = P;
Big.DP = DP;
Big.RM = RM;
Big.NE = NE;
Big.PE = PE;
Big.version = "5.2.2";
return Big;
}
function normalize(x) {
x = round(x, DP, 0);
if (x.c.length > 1 && !x.c[0]) {
let i = x.c.findIndex(x => x);
x.c = x.c.slice(i);
x.e = x.e - i;
}
}
/*
* Parse the number or string value passed to a Big constructor.
*
* x {Big} A Big number instance.
* n {number|string} A numeric value.
*/
function parse(x, n) {
var e, i, nl; // Minus zero?
if (n === 0 && 1 / n < 0) n = "-0";else if (!NUMERIC.test(n += "")) throw Error(INVALID + "number"); // Determine sign.
x.s = n.charAt(0) == "-" ? (n = n.slice(1), -1) : 1; // Decimal point?
if ((e = n.indexOf(".")) > -1) n = n.replace(".", ""); // Exponential form?
if ((i = n.search(/e/i)) > 0) {
// Determine exponent.
if (e < 0) e = i;
e += +n.slice(i + 1);
n = n.substring(0, i);
} else if (e < 0) {
// Integer.
e = n.length;
}
nl = n.length; // Determine leading zeros before decimal point.
for (i = 0; i < e && i < nl && n.charAt(i) == "0";) ++i; // older version (ignores decimal point).
// // Determine leading zeros.
// for (i = 0; i < nl && n.charAt(i) == '0';) ++i;
if (i == nl) {
// Zero.
x.c = [x.e = 0];
} else {
x.e = e - i - 1;
x.c = []; // Convert string to array of digits without leading zeros
for (e = 0; i < nl;) x.c[e++] = +n.charAt(i++); // older version (doesn't keep trailing zeroes).
// // Determine trailing zeros.
// for (; nl > 0 && n.charAt(--nl) == '0';);
// // Convert string to array of digits without leading/trailing zeros.
// for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
}
x = round(x, Big.DP, Big.RM);
return x;
}
/*
* Round Big x to a maximum of dp decimal places using rounding mode rm.
* Called by stringify, P.div, P.round and P.sqrt.
*
* x {Big} The Big to round.
* dp {number} Integer, 0 to MAX_DP inclusive.
* rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
* [more] {boolean} Whether the result of division was truncated.
*/
function round(x, dp, rm, more) {
var xc = x.c,
i = x.e + dp + 1;
if (i < xc.length) {
if (rm === 1) {
// xc[i] is the digit after the digit that may be rounded up.
more = xc[i] >= 5;
} else if (rm === 2) {
more = xc[i] > 5 || xc[i] == 5 && (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);
} else if (rm === 3) {
more = more || !!xc[0];
} else {
more = false;
if (rm !== 0) throw Error(INVALID_RM);
}
if (i < 1) {
xc.length = 1;
if (more) {
// 1, 0.1, 0.01, 0.001, 0.0001 etc.
x.e = -dp;
xc[0] = 1;
} else {
// Zero.
xc[0] = x.e = 0;
}
} else {
// Remove any digits after the required decimal places.
xc.length = i--; // Round up?
if (more) {
// Rounding up may mean the previous digit has to be rounded up.
for (; ++xc[i] > 9;) {
xc[i] = 0;
if (!i--) {
++x.e;
xc.unshift(1);
}
}
} // Remove trailing zeros.
for (i = xc.length; !xc[--i];) xc.pop();
}
} else if (rm < 0 || rm > 3 || rm !== ~~rm) {
throw Error(INVALID_RM);
}
return x;
}
/*
* Return a string representing the value of Big x in normal or exponential notation.
* Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
*
* x {Big}
* id? {number} Caller id.
* 1 toExponential
* 2 toFixed
* 3 toPrecision
* 4 valueOf
* n? {number|undefined} Caller's argument.
* k? {number|undefined}
*/
function stringify(x, id, n, k) {
var e,
s,
Big = x.constructor,
z = !x.c[0];
if (n !== UNDEFINED) {
if (n !== ~~n || n < (id == 3) || n > MAX_DP) {
throw Error(id == 3 ? INVALID + "precision" : INVALID_DP);
}
x = new Big(x); // The index of the digit that may be rounded up.
n = k - x.e; // Round?
if (x.c.length > ++k) round(x, n, Big.RM); // toFixed: recalculate k as x.e may have changed if value rounded up.
if (id == 2) k = x.e + n + 1; // Append zeros?
for (; x.c.length < k;) x.c.push(0);
}
e = x.e;
s = x.c.join("");
n = s.length; // Exponential notation?
if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {
s = s.charAt(0) + (n > 1 ? "." + s.slice(1) : "") + (e < 0 ? "e" : "e+") + e; // Normal notation.
} else if (e < 0) {
for (; ++e;) s = "0" + s;
s = "0." + s;
} else if (e > 0) {
if (++e > n) for (e -= n; e--;) s += "0";else if (e < n) s = s.slice(0, e) + "." + s.slice(e);
} else if (n > 1) {
s = s.charAt(0) + "." + s.slice(1);
}
return x.s < 0 && (!z || id == 4) ? "-" + s : s;
} // Prototype/instance methods
/*
* Return a new Big whose value is the absolute value of this Big.
*/
P.abs = function () {
var x = new this.constructor(this);
x.s = 1;
return x;
};
/*
* Return 1 if the value of this Big is greater than the value of Big y,
* -1 if the value of this Big is less than the value of Big y, or
* 0 if they have the same value.
*/
P.cmp = function (y) {
var isneg,
Big = this.constructor,
x = new Big(this),
y = new Big(y),
xc = x.c,
yc = y.c,
i = x.s,
j = y.s,
k = x.e,
l = y.e; // Either zero?
if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i; // Signs differ?
if (i != j) return i;
isneg = i < 0; // Compare exponents.
if (k != l) return k > l ^ isneg ? 1 : -1; // Compare digit by digit.
j = Math.max(xc.length, yc.length);
for (i = 0; i < j; i++) {
k = i < xc.length ? xc[i] : 0;
l = i < yc.length ? yc[i] : 0;
if (k != l) return k > l ^ isneg ? 1 : -1;
}
return 0; // old version (doesn't compare well trailing zeroes, e.g. 1.0 with 1.00)
// j = (k = xc.length) < (l = yc.length) ? k : l;
// // Compare digit by digit.
// for (i = -1; ++i < j;) {
// if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
// }
// // Compare lengths.
// return k == l ? 0 : k > l ^ isneg ? 1 : -1;
};
/*
* Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
* if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
*/
P.div = function (y) {
var Big = this.constructor,
x = new Big(this),
y = new Big(y),
a = x.c,
// dividend
b = y.c,
// divisor
k = x.s == y.s ? 1 : -1,
dp = Big.DP;
if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP); // Divisor is zero?
if (!b[0]) throw Error(DIV_BY_ZERO); // Dividend is 0? Return +-0.
if (!a[0]) return new Big(k * 0);
var bl,
bt,
n,
cmp,
ri,
bz = b.slice(),
ai = bl = b.length,
al = a.length,
r = a.slice(0, bl),
// remainder
rl = r.length,
q = y,
// quotient
qc = q.c = [],
qi = 0,
d = dp + (q.e = x.e - y.e) + 1; // number of digits of the result
q.s = k;
k = d < 0 ? 0 : d; // Create version of divisor with leading zero.
bz.unshift(0); // Add zeros to make remainder as long as divisor.
for (; rl++ < bl;) r.push(0);
do {
// n is how many times the divisor goes into current remainder.
for (n = 0; n < 10; n++) {
// Compare divisor and remainder.
if (bl != (rl = r.length)) {
cmp = bl > rl ? 1 : -1;
} else {
for (ri = -1, cmp = 0; ++ri < bl;) {
if (b[ri] != r[ri]) {
cmp = b[ri] > r[ri] ? 1 : -1;
break;
}
}
} // If divisor < remainder, subtract divisor from remainder.
if (cmp < 0) {
// Remainder can't be more than 1 digit longer than divisor.
// Equalise lengths using divisor with extra leading zero?
for (bt = rl == bl ? b : bz; rl;) {
if (r[--rl] < bt[rl]) {
ri = rl;
for (; ri && !r[--ri];) r[ri] = 9;
--r[ri];
r[rl] += 10;
}
r[rl] -= bt[rl];
}
for (; !r[0];) r.shift();
} else {
break;
}
} // Add the digit n to the result array.
qc[qi++] = cmp ? n : ++n; // Update the remainder.
if (r[0] && cmp) r[rl] = a[ai] || 0;else r = [a[ai]];
} while ((ai++ < al || r[0] !== UNDEFINED) && k--); // Leading zero? Do not remove if result is simply zero (qi == 1).
if (!qc[0] && qi != 1) {
// There can't be more than one zero.
qc.shift();
q.e--;
} // Round?
if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);
return q;
};
/*
* Return true if the value of this Big is equal to the value of Big y, otherwise return false.
*/
P.eq = function (y) {
return !this.cmp(y);
};
/*
* Return true if the value of this Big is greater than the value of Big y, otherwise return
* false.
*/
P.gt = function (y) {
return this.cmp(y) > 0;
};
/*
* Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
* return false.
*/
P.gte = function (y) {
return this.cmp(y) > -1;
};
/*
* Return true if the value of this Big is less than the value of Big y, otherwise return false.
*/
P.lt = function (y) {
return this.cmp(y) < 0;
};
/*
* Return true if the value of this Big is less than or equal to the value of Big y, otherwise
* return false.
*/
P.lte = function (y) {
return this.cmp(y) < 1;
};
/*
* Return a new Big whose value is the value of this Big minus the value of Big y.
*/
P.minus = P.sub = function (y) {
var i,
j,
t,
xlty,
Big = this.constructor,
x = new Big(this),
y = new Big(y),
a = x.s,
b = y.s; // Signs differ?
if (a != b) {
y.s = -b;
return x.plus(y);
}
var xc = x.c.slice(),
xe = x.e,
yc = y.c,
ye = y.e; // Either zero?
if (!xc[0] || !yc[0]) {
// y is non-zero? x is non-zero? Or both are zero.
return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);
} // Determine which is the bigger number. Prepend zeros to equalise exponents.
if (a = xe - ye) {
if (xlty = a < 0) {
a = -a;
t = xc;
} else {
ye = xe;
t = yc;
}
t.reverse();
for (b = a; b--;) t.push(0);
t.reverse();
} else {
// Exponents equal. Check digit by digit.
j = ((xlty = xc.length < yc.length) ? xc : yc).length;
for (a = b = 0; b < j; b++) {
if (xc[b] != yc[b]) {
xlty = xc[b] < yc[b];
break;
}
}
} // x < y? Point xc to the array of the bigger number.
if (xlty) {
t = xc;
xc = yc;
yc = t;
y.s = -y.s;
}
/*
* Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
* needs to start at yc.length.
*/
if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0; // Subtract yc from xc.
for (b = i; j > a;) {
if (xc[--j] < yc[j]) {
for (i = j; i && !xc[--i];) xc[i] = 9;
--xc[i];
xc[j] += 10;
}
xc[j] -= yc[j];
} // Remove trailing zeros.
for (; xc[--b] === 0;) xc.pop(); // Remove leading zeros and adjust exponent accordingly.
for (; xc[0] === 0;) {
xc.shift();
--ye;
}
if (!xc[0]) {
// n - n = +0
y.s = 1; // Result must be zero.
xc = [ye = 0];
}
y.c = xc;
y.e = ye;
return y;
};
/*
* Return a new Big whose value is the value of this Big modulo the value of Big y.
*/
P.mod = function (y) {
var ygtx,
Big = this.constructor,
x = new Big(this),
y = new Big(y),
a = x.s,
b = y.s;
if (!y.c[0]) throw Error(DIV_BY_ZERO);
x.s = y.s = 1;
ygtx = y.cmp(x) == 1;
x.s = a;
y.s = b;
if (ygtx) return new Big(x);
a = Big.DP;
b = Big.RM;
Big.DP = Big.RM = 0;
x = x.div(y);
Big.DP = a;
Big.RM = b;
return this.minus(x.times(y));
};
/*
* Return a new Big whose value is the value of this Big plus the value of Big y.
*/
P.plus = P.add = function (y) {
var t,
Big = this.constructor,
x = new Big(this),
y = new Big(y),
a = x.s,
b = y.s; // Signs differ?
if (a != b) {
y.s = -b;
return x.minus(y);
}
var xe = x.e,
xc = x.c,
ye = y.e,
yc = y.c; // Either zero? y is non-zero? x is non-zero? Or both are zero.
if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);
xc = xc.slice(); // Prepend zeros to equalise exponents.
// Note: reverse faster than unshifts.
if (a = xe - ye) {
if (a > 0) {
ye = xe;
t = yc;
} else {
a = -a;
t = xc;
}
t.reverse();
for (; a--;) t.push(0);
t.reverse();
} // Point xc to the longer array.
if (xc.length - yc.length < 0) {
t = yc;
yc = xc;
xc = t;
}
a = yc.length; // Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0; // No need to check for zero, as +x + +y != 0 && -x + -y != 0
if (b) {
xc.unshift(b);
++ye;
} // Remove trailing zeros.
for (a = xc.length; xc[--a] === 0;) xc.pop();
y.c = xc;
y.e = ye;
return y;
};
/*
* Return a Big whose value is the value of this Big raised to the power n.
* If n is negative, round to a maximum of Big.DP decimal places using rounding
* mode Big.RM.
*
* n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
*/
P.pow = function (n) {
var Big = this.constructor,
x = new Big(this),
y = new Big(1),
one = new Big(1),
isneg = n < 0;
if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + "exponent");
if (isneg) n = -n;
for (;;) {
if (n & 1) y = y.times(x);
n >>= 1;
if (!n) break;
x = x.times(x);
}
return isneg ? one.div(y) : y;
};
/*
* Return a new Big whose value is the value of this Big rounded using rounding mode rm
* to a maximum of dp decimal places, or, if dp is negative, to an integer which is a
* multiple of 10**-dp.
* If dp is not specified, round to 0 decimal places.
* If rm is not specified, use Big.RM.
*
* dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
* rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
*/
P.round = function (dp, rm) {
var Big = this.constructor;
if (dp === UNDEFINED) dp = 0;else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);
return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);
};
/*
* Return a new Big whose value is the square root of the value of this Big, rounded, if
* necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
*/
P.sqrt = function () {
var r,
c,
t,
Big = this.constructor,
x = new Big(this),
s = x.s,
e = x.e,
half = new Big(0.5); // Zero?
if (!x.c[0]) return new Big(x); // Negative?
if (s < 0) throw Error(NAME + "No square root"); // Estimate.
s = Math.sqrt(x + ""); // Math.sqrt underflow/overflow?
// Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
if (s === 0 || s === 1 / 0) {
c = x.c.join("");
if (!(c.length + e & 1)) c += "0";
s = Math.sqrt(c);
e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
r = new Big((s == 1 / 0 ? "1e" : (s = s.toExponential()).slice(0, s.indexOf("e") + 1)) + e);
} else {
r = new Big(s);
}
e = r.e + (Big.DP += 4); // Newton-Raphson iteration.
do {
t = r;
r = half.times(t.plus(x.div(t)));
} while (t.c.slice(0, e).join("") !== r.c.slice(0, e).join(""));
return round(r, Big.DP -= 4, Big.RM);
};
/*
* Return a new Big whose value is the value of this Big times the value of Big y.
*/
P.times = P.mul = function (y) {
var c,
Big = this.constructor,
x = new Big(this),
y = new Big(y),
xc = x.c,
yc = y.c,
a = xc.length,
b = yc.length,
i = x.e,
j = y.e; // Determine sign of result.
y.s = x.s == y.s ? 1 : -1; // Return signed 0 if either 0.
if (!xc[0] || !yc[0]) return new Big(y.s * 0); // Initialise exponent of result as x.e + y.e.
y.e = i + j; // If array xc has fewer digits than yc, swap xc and yc, and lengths.
if (a < b) {
c = xc;
xc = yc;
yc = c;
j = a;
a = b;
b = j;
} // Initialise coefficient array of result with zeros.
for (c = new Array(j = a + b); j--;) c[j] = 0; // Multiply.
// i is initially xc.length.
for (i = b; i--;) {
b = 0; // a is yc.length.
for (j = a + i; j > i;) {
// Current sum of products at this digit position, plus carry.
b = c[j] + yc[i] * xc[j - i - 1] + b;
c[j--] = b % 10; // carry
b = b / 10 | 0;
}
c[j] = (c[j] + b) % 10;
} // Increment result exponent if there is a final carry, otherwise remove leading zero.
if (b) ++y.e;else c.shift(); // Remove trailing zeros.
for (i = c.length; !c[--i];) c.pop();
y.c = c;
return y;
};
/*
* Return a string representing the value of this Big in exponential notation to dp fixed decimal
* places and rounded using Big.RM.
*
* dp? {number} Integer, 0 to MAX_DP inclusive.
*/
P.toExponential = function (dp) {
return stringify(this, 1, dp, dp);
};
/*
* Return a string representing the value of this Big in normal notation to dp fixed decimal
* places and rounded using Big.RM.
*
* dp? {number} Integer, 0 to MAX_DP inclusive.
*
* (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
* (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
*/
P.toFixed = function (dp) {
return stringify(this, 2, dp, this.e + dp);
};
/*
* Return a string representing the value of this Big rounded to sd significant digits using
* Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent
* the integer part of the value in normal notation.
*
* sd {number} Integer, 1 to MAX_DP inclusive.
*/
P.toPrecision = function (sd) {
return stringify(this, 3, sd, sd - 1);
};
/*
* Return a string representing the value of this Big.
* Return exponential notation if this Big has a positive exponent equal to or greater than
* Big.PE, or a negative exponent equal to or less than Big.NE.
* Omit the sign for negative zero.
*/
P.toString = function () {
return stringify(this);
};
/*
* Return a string representing the value of this Big.
* Return exponential notation if this Big has a positive exponent equal to or greater than
* Big.PE, or a negative exponent equal to or less than Big.NE.
* Include the sign for negative zero.
*/
P.valueOf = P.toJSON = function () {
return stringify(this, 4);
}; // Export
var Big = _Big_();
const get_Zero = new Big(0);
const get_One = new Big(1);
const get_MinusOne = new Big(-1);
const get_MaxValue = new Big("79228162514264337593543950335");
const get_MinValue = new Big("-79228162514264337593543950335");
var NumberStyles;
(function (NumberStyles) {
// None = 0x00000000,
// AllowLeadingWhite = 0x00000001,
// AllowTrailingWhite = 0x00000002,
// AllowLeadingSign = 0x00000004,
// AllowTrailingSign = 0x00000008,
// AllowParentheses = 0x00000010,
// AllowDecimalPoint = 0x00000020,
// AllowThousands = 0x00000040,
// AllowExponent = 0x00000080,
// AllowCurrencySymbol = 0x00000100,
NumberStyles[NumberStyles["AllowHexSpecifier"] = 512] = "AllowHexSpecifier"; // Integer = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign,
// HexNumber = AllowLeadingWhite | AllowTrailingWhite | AllowHexSpecifier,
// Number = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign |
// AllowTrailingSign | AllowDecimalPoint | AllowThousands,
// Float = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign |
// AllowDecimalPoint | AllowExponent,
// Currency = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign | AllowTrailingSign |
// AllowParentheses | AllowDecimalPoint | AllowThousands | AllowCurrencySymbol,
// Any = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign | AllowTrailingSign |
// AllowParentheses | AllowDecimalPoint | AllowThousands | AllowCurrencySymbol | AllowExponent,
})(NumberStyles || (NumberStyles = {}));
function validResponse(regexMatch, radix) {
const [_all, sign, prefix, digits] = regexMatch;
return {
sign: sign || "",
prefix: prefix || "",
digits,
radix
};
}
function getRange(unsigned, bitsize) {
switch (bitsize) {
case 8:
return unsigned ? [0, 255] : [-128, 127];
case 16:
return unsigned ? [0, 65535] : [-32768, 32767];
case 32:
return unsigned ? [0, 4294967295] : [-2147483648, 2147483647];
default:
throw new Error("Invalid bit size.");
}
}
function getInvalidDigits(radix) {
switch (radix) {
case 2:
return /[^0-1]/;
case 8:
return /[^0-7]/;
case 10:
return /[^0-9]/;
case 16:
return /[^0-9a-fA-F]/;
default:
throw new Error("Invalid Base.");
}
}
function getRadix(prefix, style) {
if (style & NumberStyles.AllowHexSpecifier) {
return 16;
} else {
switch (prefix) {
case "0b":
case "0B":
return 2;
case "0o":
case "0O":
return 8;
case "0x":
case "0X":
return 16;
default:
return 10;
}
}
}
function isValid(str, style, radix) {
const integerRegex = /^\s*([\+\-])?(0[xXoObB])?([0-9a-fA-F]+)\s*$/;
const res = integerRegex.exec(str.replace(/_/g, ""));
if (res != null) {
const [_all, sign, prefix, digits] = res;
radix = radix || getRadix(prefix, style);
const invalidDigits = getInvalidDigits(radix);
if (!invalidDigits.test(digits)) {
return validResponse(res, radix);
}
}
return null;
}
function parse$1(str, style, unsigned, bitsize, radix) {
const res = isValid(str, style, radix);
if (res != null) {
let v = Number.parseInt(res.sign + res.digits, res.radix);
if (!Number.isNaN(v)) {
const [umin, umax] = getRange(true, bitsize);
if (!unsigned && res.radix !== 10 && v >= umin && v <= umax) {
v = v << 32 - bitsize >> 32 - bitsize;
}
const [min, max] = getRange(unsigned, bitsize);
if (v >= min && v <= max) {
return v;
}
}
}
throw new Error("Input string was not in a correct format.");
}
function tryParse(str, style, unsigned, bitsize) {
try {
const v = parse$1(str, style, unsigned, bitsize);
return [true, v];
} catch (_a) {// supress error
}
return [false, 0];
}
// Adapted from: https://github.com/dcodeIO/long.js/blob/master/src/long.js
/**
* wasm optimizations, to do native i64 multiplication and divide
*/
var wasm = null;
try {
wasm = new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0, 97, 115, 109, 1, 0, 0, 0, 1, 13, 2, 96, 0, 1, 127, 96, 4, 127, 127, 127, 127, 1, 127, 3, 7, 6, 0, 1, 1, 1, 1, 1, 6, 6, 1, 127, 1, 65, 0, 11, 7, 50, 6, 3, 109, 117, 108, 0, 1, 5, 100, 105, 118, 95, 115, 0, 2, 5, 100, 105, 118, 95, 117, 0, 3, 5, 114, 101, 109, 95, 115, 0, 4, 5, 114, 101, 109, 95, 117, 0, 5, 8, 103, 101, 116, 95, 104, 105, 103, 104, 0, 0, 10, 191, 1, 6, 4, 0, 35, 0, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 126, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 127, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 128, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 129, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 130, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11])), {}).exports;
} catch (e) {} // no wasm support :(
/**
* Constructs a 64 bit two's-complement integer, given its low and high 32 bit values as *signed* integers.
* See the from* functions below for more convenient ways of constructing Longs.
* @exports Long
* @class A Long class for representing a 64 bit two's-complement integer value.
* @param {number} low The low (signed) 32 bits of the long
* @param {number} high The high (signed) 32 bits of the long
* @param {boolean=} unsigned Whether unsigned or not, defaults to signed
* @constructor
*/
function Long(low, high, unsigned) {
/**
* The low 32 bits as a signed value.
* @type {number}
*/
this.low = low | 0;
/**
* The high 32 bits as a signed value.
* @type {number}
*/
this.high = high | 0;
/**
* Whether unsigned or not.
* @type {boolean}
*/
this.unsigned = !!unsigned;
}
Long.prototype.GetHashCode = function () {
let h1 = this.unsigned ? 1 : 0;
h1 = (h1 << 5) + h1 ^ this.high;
h1 = (h1 << 5) + h1 ^ this.low;
return h1;
};
Long.prototype.Equals = function (x) {
return equals$1(this, x);
};
Long.prototype.CompareTo = function (x) {
return compare$1(this, x);
};
Long.prototype.toString = function (radix) {
return toString(this, radix);
};
Long.prototype.toJSON = function () {
return toString(this);
}; // The internal representation of a long is the two given signed, 32-bit values.
Object.defineProperty(Long.prototype, "__isLong__", {
value: true
});
/**
* @function
* @param {*} obj Object
* @returns {boolean}
* @inner
*/
function isLong(obj) {
return (obj && obj["__isLong__"]) === true;
}
/**
* Tests if the specified object is a Long.
* @function
* @param {*} obj Object
* @returns {boolean}
*/
// Long.isLong = isLong;
/**
* A cache of the Long representations of small integer values.
* @type {!Object}
* @inner
*/
var INT_CACHE = {};
/**
* A cache of the Long representations of small unsigned integer values.
* @type {!Object}
* @inner
*/
var UINT_CACHE = {};
/**
* @param {number} value
* @param {boolean=} unsigned
* @returns {!Long}
* @inner
*/
function fromInt(value, unsigned) {
var obj, cachedObj, cache;
if (unsigned) {
value >>>= 0;
if (cache = 0 <= value && value < 256) {
cachedObj = UINT_CACHE[value];
if (cachedObj) return cachedObj;
}
obj = fromBits(value, (value | 0) < 0 ? -1 : 0, true);
if (cache) UINT_CACHE[value] = obj;
return obj;
} else {
value |= 0;
if (cache = -128 <= value && value < 128) {
cachedObj = INT_CACHE[value];
if (cachedObj) return cachedObj;
}
obj = fromBits(value, value < 0 ? -1 : 0, false);
if (cache) INT_CACHE[value] = obj;
return obj;
}
}
/**
* Returns a Long representing the given 32 bit integer value.
* @function
* @param {number} value The 32 bit integer in question
* @param {boolean=} unsigned Whether unsigned or not, defaults to signed
* @returns {!Long} The corresponding Long value
*/
// Long.fromInt = fromInt;
/**
* @param {number} value
* @param {boolean=} unsigned
* @returns {!Long}
* @inner
*/
function fromNumber(value, unsigned) {
if (isNaN(value)) return unsigned ? UZERO : ZERO;
if (unsigned) {
if (value < 0) return UZERO;
if (value >= TWO_PWR_64_DBL) return MAX_UNSIGNED_VALUE;
} else {
if (value <= -TWO_PWR_63_DBL) return MIN_VALUE;
if (value + 1 >= TWO_PWR_63_DBL) return MAX_VALUE;
}
if (value < 0) return negate(fromNumber(-value, unsigned));
return fromBits(value % TWO_PWR_32_DBL | 0, value / TWO_PWR_32_DBL | 0, unsigned);
}
/**
* Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.
* @function
* @param {number} value The number in question
* @param {boolean=} unsigned Whether unsigned or not, defaults to signed
* @returns {!Long} The corresponding Long value
*/
// Long.fromNumber = fromNumber;
/**
* @param {number} lowBits
* @param {number} highBits
* @param {boolean=} unsigned
* @returns {!Long}
* @inner
*/
function fromBits(lowBits, highBits, unsigned) {
return new Long(lowBits, highBits, unsigned);
}
/**
* Returns a Long representing the 64 bit integer that comes by concatenating the given low and high bits. Each is
* assumed to use 32 bits.
* @function
* @param {number} lowBits The low 32 bits
* @param {number} highBits The high 32 bits
* @param {boolean=} unsigned Whether unsigned or not, defaults to signed
* @returns {!Long} The corresponding Long value
*/
// Long.fromBits = fromBits;
/**
* @function
* @param {number} base
* @param {number} exponent
* @returns {number}
* @inner
*/
var pow_dbl = Math.pow; // Used 4 times (4*8 to 15+4)
/**
* @param {string} str
* @param {(boolean|number)=} unsigned
* @param {number=} radix
* @returns {!Long}
* @inner
*/
function fromString(str, unsigned, radix) {
if (str.length === 0) throw Error("empty string");
if (str === "NaN" || str === "Infinity" || str === "+Infinity" || str === "-Infinity") return ZERO;
if (typeof unsigned === "number") {
// For goog.math.long compatibility
radix = unsigned, unsigned = false;
} else {
unsigned = !!unsigned;
}
radix = radix || 10;
if (radix < 2 || 36 < radix) throw RangeError("radix");
var p = str.indexOf("-");
if (p > 0) throw Error("interior hyphen");else if (p === 0) {
return negate(fromString(str.substring(1), unsigned, radix));
} // Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = fromNumber(pow_dbl(radix, 8));
var result = ZERO;
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i),
value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = fromNumber(pow_dbl(radix, size));
result = add(multiply(result, power), fromNumber(value));
} else {
result = multiply(result, radixToPower);
result = add(result, fromNumber(value));
}
}
result.unsigned = unsigned;
return result;
}
/**
* Returns a Long representation of the given string, written using the specified radix.
* @function
* @param {string} str The textual representation of the Long
* @param {(boolean|number)=} unsigned Whether unsigned or not, defaults to signed
* @param {number=} radix The radix in which the text is written (2-36), defaults to 10
* @returns {!Long} The corresponding Long value
*/
// Long.fromString = fromString;
/**
* @function
* @param {!Long|number|string|!{low: number, high: number, unsigned: boolean}} val
* @param {boolean=} unsigned
* @returns {!Long}
* @inner
*/
function fromValue(val, unsigned) {
if (typeof val === "number") return fromNumber(val, unsigned);
if (typeof val === "string") return fromString(val, unsigned); // Throws for non-objects, converts non-instanceof Long:
return fromBits(val.low, val.high, typeof unsigned === "boolean" ? unsigned : val.unsigned);
}
/**
* Converts the specified value to a Long using the appropriate from* function for its type.
* @function
* @param {!Long|number|string|!{low: number, high: number, unsigned: boolean}} val Value
* @param {boolean=} unsigned Whether unsigned or not, defaults to signed
* @returns {!Long}
*/
// Long.fromValue = fromValue;
// NOTE: the compiler should inline these constant values below and then remove these variables, so there should be
// no runtime penalty for these.
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_16_DBL = 1 << 16;
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_24_DBL = 1 << 24;
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_32_DBL = TWO_PWR_16_DBL * TWO_PWR_16_DBL;
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_64_DBL = TWO_PWR_32_DBL * TWO_PWR_32_DBL;
/**
* @type {number}
* @const
* @inner
*/
var TWO_PWR_63_DBL = TWO_PWR_64_DBL / 2;
/**
* @type {!Long}
* @const
* @inner
*/
var TWO_PWR_24 = fromInt(TWO_PWR_24_DBL);
/**
* @type {!Long}
* @inner
*/
var ZERO = fromInt(0);
/**
* Signed zero.
* @type {!Long}
*/
// Long.ZERO = ZERO;
/**
* @type {!Long}
* @inner
*/
var UZERO = fromInt(0, true);
/**
* Unsigned zero.
* @type {!Long}
*/
// Long.UZERO = UZERO;
/**
* @type {!Long}
* @inner
*/
var ONE = fromInt(1);
/**
* Signed one.
* @type {!Long}
*/
// Long.ONE = ONE;
/**
* @type {!Long}
* @inner
*/
var UONE = fromInt(1, true);
/**
* Unsigned one.
* @type {!Long}
*/
// Long.UONE = UONE;
/**
* @type {!Long}
* @inner
*/
var NEG_ONE = fromInt(-1);
/**
* Signed negative one.
* @type {!Long}
*/
// Long.NEG_ONE = NEG_ONE;
/**
* @type {!Long}
* @inner
*/
var MAX_VALUE = fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0, false);
/**
* Maximum signed value.
* @type {!Long}
*/
// Long.MAX_VALUE = MAX_VALUE;
/**
* @type {!Long}
* @inner
*/
var MAX_UNSIGNED_VALUE = fromBits(0xFFFFFFFF | 0, 0xFFFFFFFF | 0, true);
/**
* Maximum unsigned value.
* @type {!Long}
*/
// Long.MAX_UNSIGNED_VALUE = MAX_UNSIGNED_VALUE;
/**
* @type {!Long}
* @inner
*/
var MIN_VALUE = fromBits(0, 0x80000000 | 0, false);
/**
* Minimum signed value.
* @type {!Long}
*/
// Long.MIN_VALUE = MIN_VALUE;
/**
* @alias Long.prototype
* @inner
*/
// var LongPrototype = Long.prototype;
/**
* Converts the Long to a 32 bit integer, assuming it is a 32 bit integer.
* @this {!Long}
* @returns {number}
*/
function toInt($this) {
return $this.unsigned ? $this.low >>> 0 : $this.low;
}
/**
* Converts the Long to a the nearest floating-point representation of this value (double, 53 bit mantissa).
* @this {!Long}
* @returns {number}
*/
function toNumber($this) {
if ($this.unsigned) return ($this.high >>> 0) * TWO_PWR_32_DBL + ($this.low >>> 0);
return $this.high * TWO_PWR_32_DBL + ($this.low >>> 0);
}
/**
* Converts the Long to a string written in the specified radix.
* @this {!Long}
* @param {number=} radix Radix (2-36), defaults to 10
* @returns {string}
* @override
* @throws {RangeError} If `radix` is out of range
*/
function toString($this, radix) {
radix = radix || 10;
if (radix < 2 || 36 < radix) throw RangeError("radix");
if (isZero($this)) return "0";
if (isNegative($this)) {
// Unsigned Longs are never negative
if (equals$1($this, MIN_VALUE)) {
// We need to change the Long value before it can be negated, so we remove
// the bottom-most digit in this base and then recurse to do the rest.
var radixLong = fromNumber(radix),
div = divide($this, radixLong),
rem1 = subtract(multiply(div, radixLong), $this);
return toString(div, radix) + toInt(rem1).toString(radix);
} else return "-" + toString(negate($this), radix);
} // Do several (6) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = fromNumber(pow_dbl(radix, 6), $this.unsigned),
rem = $this;
var result = "";
while (true) {
var remDiv = divide(rem, radixToPower),
intval = toInt(subtract(rem, multiply(remDiv, radixToPower))) >>> 0,
digits = intval.toString(radix);
rem = remDiv;
if (isZero(rem)) return digits + result;else {
while (digits.length < 6) digits = "0" + digits;
result = "" + digits + result;
}
}
}
/**
* Tests if this Long's value equals zero.
* @this {!Long}
* @returns {boolean}
*/
function isZero($this) {
return $this.high === 0 && $this.low === 0;
}
/**
* Tests if this Long's value equals zero. This is an alias of {@link Long#isZero}.
* @returns {boolean}
*/
// LongPrototype.eqz = LongPrototype.isZero;
/**
* Tests if this Long's value is negative.
* @this {!Long}
* @returns {boolean}
*/
function isNegative($this) {
return !$this.unsigned && $this.high < 0;
}
/**
* Tests if this Long's value is odd.
* @this {!Long}
* @returns