ts-useful
Version:
Functions for animation, color transitions, ecliptic, bezier, decasteljau, curves, three dimensional curves, smooth scrolling, random range, randomItem, mobius index, vectors, physics vectors, and easing.
95 lines • 3.8 kB
JavaScript
;
Object.defineProperty(exports, "__esModule", { value: true });
exports.Bezier = void 0;
/**
* https://github.com/gre/bezier-easing
* BezierEasing - use bezier curve for transition easing function
* by Gaëtan Renaudeau 2014 - 2015 – MIT License
*/
const Bezier = (values) => {
if (values.length === 0)
return (v) => 0;
const newtonIterations = 4;
const newtonMinSlope = 0.001;
const subdivisionPrecision = 0.0000001;
const subdivisionMaxIterations = 10;
const kSplineTableSize = 11;
const kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
const A = (aA1, aA2) => 1.0 - 3.0 * aA2 + 3.0 * aA1;
const B = (aA1, aA2) => 3.0 * aA2 - 6.0 * aA1;
const C = (aA1) => 3.0 * aA1;
const float32ArraySupported = () => typeof Float32Array === "function";
const calcBezier = (aT, aA1, aA2) => ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;
const getSlope = (aT, aA1, aA2) => 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
const binarySubdivide = (aX, aA, aB, mX1, mX2) => {
let currentX;
let currentT;
let i = 0;
do {
currentT = aA + (aB - aA) / 2.0;
currentX = calcBezier(currentT, mX1, mX2) - aX;
if (currentX > 0.0) {
aB = currentT;
}
else {
aA = currentT;
}
} while (Math.abs(currentX) > subdivisionPrecision && ++i < subdivisionMaxIterations);
return currentT;
};
const newtonRaphsonIterate = (aX, aGuessT, mX1, mX2) => {
for (let i = 0; i < newtonIterations; ++i) {
const currentSlope = getSlope(aGuessT, mX1, mX2);
if (currentSlope === 0.0) {
return aGuessT;
}
const currentX = calcBezier(aGuessT, mX1, mX2) - aX;
aGuessT -= currentX / currentSlope;
}
return aGuessT;
};
const create = (coords) => {
const [mX1, mY1, mX2, mY2] = coords;
const sampleValues = float32ArraySupported()
? new Float32Array(kSplineTableSize)
: new Array(kSplineTableSize);
if (mX1 !== mY1 || mX2 !== mY2) {
for (let i = 0; i < kSplineTableSize; ++i) {
sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
}
}
const getTForX = (aX) => {
let intervalStart = 0.0;
let currentSample = 1;
const lastSample = kSplineTableSize - 1;
for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) {
intervalStart += kSampleStepSize;
}
--currentSample;
const dist = (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]);
const guessForT = intervalStart + dist * kSampleStepSize;
const initialSlope = getSlope(guessForT, mX1, mX2);
if (initialSlope >= newtonMinSlope) {
return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
}
else if (initialSlope === 0.0) {
return guessForT;
}
else {
return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2);
}
};
return (x) => {
if (mX1 === mY1 && mX2 === mY2)
return x;
if (x === 0)
return 0;
if (x === 1)
return 1;
return calcBezier(getTForX(x), mY1, mY2);
};
};
return create(values);
};
exports.Bezier = Bezier;
//# sourceMappingURL=bezier.js.map