UNPKG

ts-useful

Version:

Functions for animation, color transitions, ecliptic, bezier, decasteljau, curves, three dimensional curves, smooth scrolling, random range, randomItem, mobius index, vectors, physics vectors, and easing.

95 lines 3.8 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.Bezier = void 0; /** * https://github.com/gre/bezier-easing * BezierEasing - use bezier curve for transition easing function * by Gaëtan Renaudeau 2014 - 2015 – MIT License */ const Bezier = (values) => { if (values.length === 0) return (v) => 0; const newtonIterations = 4; const newtonMinSlope = 0.001; const subdivisionPrecision = 0.0000001; const subdivisionMaxIterations = 10; const kSplineTableSize = 11; const kSampleStepSize = 1.0 / (kSplineTableSize - 1.0); const A = (aA1, aA2) => 1.0 - 3.0 * aA2 + 3.0 * aA1; const B = (aA1, aA2) => 3.0 * aA2 - 6.0 * aA1; const C = (aA1) => 3.0 * aA1; const float32ArraySupported = () => typeof Float32Array === "function"; const calcBezier = (aT, aA1, aA2) => ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; const getSlope = (aT, aA1, aA2) => 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); const binarySubdivide = (aX, aA, aB, mX1, mX2) => { let currentX; let currentT; let i = 0; do { currentT = aA + (aB - aA) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - aX; if (currentX > 0.0) { aB = currentT; } else { aA = currentT; } } while (Math.abs(currentX) > subdivisionPrecision && ++i < subdivisionMaxIterations); return currentT; }; const newtonRaphsonIterate = (aX, aGuessT, mX1, mX2) => { for (let i = 0; i < newtonIterations; ++i) { const currentSlope = getSlope(aGuessT, mX1, mX2); if (currentSlope === 0.0) { return aGuessT; } const currentX = calcBezier(aGuessT, mX1, mX2) - aX; aGuessT -= currentX / currentSlope; } return aGuessT; }; const create = (coords) => { const [mX1, mY1, mX2, mY2] = coords; const sampleValues = float32ArraySupported() ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize); if (mX1 !== mY1 || mX2 !== mY2) { for (let i = 0; i < kSplineTableSize; ++i) { sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2); } } const getTForX = (aX) => { let intervalStart = 0.0; let currentSample = 1; const lastSample = kSplineTableSize - 1; for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) { intervalStart += kSampleStepSize; } --currentSample; const dist = (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]); const guessForT = intervalStart + dist * kSampleStepSize; const initialSlope = getSlope(guessForT, mX1, mX2); if (initialSlope >= newtonMinSlope) { return newtonRaphsonIterate(aX, guessForT, mX1, mX2); } else if (initialSlope === 0.0) { return guessForT; } else { return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2); } }; return (x) => { if (mX1 === mY1 && mX2 === mY2) return x; if (x === 0) return 0; if (x === 1) return 1; return calcBezier(getTForX(x), mY1, mY2); }; }; return create(values); }; exports.Bezier = Bezier; //# sourceMappingURL=bezier.js.map