UNPKG

ts-quantum

Version:

TypeScript library for quantum mechanics calculations and utilities

77 lines 2.82 kB
/** * Creation and annihilation operators for quantum harmonic oscillators */ import { MatrixOperator } from '../operators/operator'; import * as math from 'mathjs'; /** * Creates creation operator a† for dimension N * Matrix elements: ⟨n|a†|m⟩ = √(m+1)δ(n,m+1) */ export function creationOp(dimension) { const matrix = Array(dimension).fill(null) .map(() => Array(dimension).fill(null) .map(() => math.complex(0, 0))); // Fill matrix elements for (let m = 0; m < dimension - 1; m++) { matrix[m + 1][m] = math.complex(Math.sqrt(m + 1), 0); } return new MatrixOperator(matrix); } /** * Creates annihilation operator a for dimension N * Matrix elements: ⟨n|a|m⟩ = √m δ(n,m-1) */ export function destructionOp(dimension) { const matrix = Array(dimension).fill(null) .map(() => Array(dimension).fill(null) .map(() => math.complex(0, 0))); // Fill matrix elements for (let m = 1; m < dimension; m++) { matrix[m - 1][m] = math.complex(Math.sqrt(m), 0); } return new MatrixOperator(matrix); } /** * Creates number operator n = a†a for dimension N */ export function numberOp(dimension) { // Create diagonal matrix for number operator const matrix = Array(dimension).fill(null) .map((_, i) => Array(dimension).fill(null) .map((_, j) => i === j ? math.complex(i, 0) : math.complex(0, 0))); // Explicitly mark as hermitian since it's diagonal with real entries return new MatrixOperator(matrix, 'hermitian'); } /** * Creates position operator x = (a + a†)/√2 for dimension N */ export function positionOp(dimension) { const aOp = destructionOp(dimension); const aUpOp = creationOp(dimension); // Scale operator after addition to maintain hermiticity const sumOp = aOp.add(aUpOp); const finalOp = sumOp.scale(math.complex(1 / Math.sqrt(2), 0)); return new MatrixOperator(finalOp.toMatrix(), 'hermitian'); } /** * Creates momentum operator p = i(a† - a)/√2 for dimension N */ export function momentumOp(dimension) { const aOp = destructionOp(dimension); const aUpOp = creationOp(dimension); // i(a† - a)/√2 const diffOp = aUpOp.add(aOp.scale(math.complex(-1, 0))); const finalOp = diffOp.scale(math.complex(0, 1 / Math.sqrt(2))); return new MatrixOperator(finalOp.toMatrix(), 'hermitian'); } /** * Creates harmonic oscillator Hamiltonian H = ℏω(a†a + 1/2) * For simplicity, we set ℏω = 1 */ export function harmonicOscillator(dimension) { const n = numberOp(dimension); const halfId = MatrixOperator.identity(dimension).scale(math.complex(0.5, 0)); const hamiltonian = n.add(halfId); return new MatrixOperator(hamiltonian.toMatrix(), 'hermitian'); } //# sourceMappingURL=oscillator.js.map