UNPKG

ts-quantum

Version:

TypeScript library for quantum mechanics calculations and utilities

364 lines 13.6 kB
/** * Operator algebra extensions for quantum mechanics * * Provides fundamental operator algebra operations including commutators, * anti-commutators, Lie algebraic structures, and more. */ import { MatrixOperator } from './operator'; import { matrixExponential } from '../utils/matrixOperations'; import * as math from 'mathjs'; /** * Adds two operators * * @param a First operator * @param b Second operator * @returns The sum operator */ export function addOperators(a, b) { if (a.dimension !== b.dimension) { throw new Error('Operator dimensions do not match'); } return a.add(b); } /** * Subtracts one operator from another * * @param a First operator * @param b Second operator to subtract * @returns The difference operator */ export function subtractOperators(a, b) { if (a.dimension !== b.dimension) { throw new Error('Operator dimensions do not match'); } return a.add(b.scale(math.complex(-1, 0))); } /** * Calculates the commutator [A,B] = AB - BA between two operators * * Used for determining whether operators commute, which is essential * for determining if observables can be measured simultaneously. * * @param A First operator * @param B Second operator * @returns The commutator operator [A,B] */ export function commutator(A, B) { if (A.dimension !== B.dimension) { throw new Error('Operators must have the same dimension for commutator'); } // Manually calculate the commutator with proper complex number handling const matrixA = A.toMatrix(); const matrixB = B.toMatrix(); const dim = A.dimension; // Initialize result matrix const resultMatrix = Array(dim).fill(null) .map(() => Array(dim).fill(null) .map(() => math.complex(0, 0))); // Calculate AB - BA directly with proper complex number handling for (let i = 0; i < dim; i++) { for (let j = 0; j < dim; j++) { let ab = math.complex(0, 0); let ba = math.complex(0, 0); for (let k = 0; k < dim; k++) { // Calculate AB term ab = math.add(ab, math.multiply(math.complex(matrixA[i][k].re, matrixA[i][k].im), math.complex(matrixB[k][j].re, matrixB[k][j].im))); // Calculate BA term ba = math.add(ba, math.multiply(math.complex(matrixB[i][k].re, matrixB[i][k].im), math.complex(matrixA[k][j].re, matrixA[k][j].im))); } // AB - BA for this element resultMatrix[i][j] = math.subtract(ab, ba); } } return new MatrixOperator(resultMatrix); } /** * Calculates the anti-commutator {A,B} = AB + BA between two operators * * Important for fermion systems and in supersymmetry. * * @param A First operator * @param B Second operator * @returns The anti-commutator operator {A,B} */ export function antiCommutator(A, B) { if (A.dimension !== B.dimension) { throw new Error('Operators must have the same dimension for anti-commutator'); } // Manually calculate anti-commutator with proper complex number handling const matrixA = A.toMatrix(); const matrixB = B.toMatrix(); const dim = A.dimension; // Initialize result matrix const resultMatrix = Array(dim).fill(null) .map(() => Array(dim).fill(null) .map(() => math.complex(0, 0))); // Calculate AB + BA directly with proper complex number handling for (let i = 0; i < dim; i++) { for (let j = 0; j < dim; j++) { let ab = math.complex(0, 0); let ba = math.complex(0, 0); for (let k = 0; k < dim; k++) { // Calculate AB term ab = math.add(ab, math.multiply(math.complex(matrixA[i][k].re, matrixA[i][k].im), math.complex(matrixB[k][j].re, matrixB[k][j].im))); // Calculate BA term ba = math.add(ba, math.multiply(math.complex(matrixB[i][k].re, matrixB[i][k].im), math.complex(matrixA[k][j].re, matrixA[k][j].im))); } // AB + BA for this element resultMatrix[i][j] = math.add(ab, ba); } } return new MatrixOperator(resultMatrix); } /** * Calculates a nested commutator [A, [B, C]] and more complex structures * * Useful for higher-order perturbation theory and quantum field calculations. * * @param ops Array of operators to use in nested commutator * @param indices Array of pairs of indices specifying the commutator structure. * Each pair [a, b] creates a commutator between operators. * Pairs are processed from last to first (innermost to outermost). * IMPORTANT: This function only supports strictly nested commutators of the form [A,[B,[C,D]]], not branched structures like [[A,B],[C,D]]. * * @example * // For a structure [A,[B,C]] with ops = [A, B, C] * // indices = [[0, 1], [1, 2]] * // 1. First computes [B,C] using indices [1,2] (last pair) * // 2. Then computes [A,[B,C]] using [0,1] (first pair) * * @example * // For the Jacobi identity [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] * // term1 = nestedCommutator([X, Y, Z], [[0, 1], [1, 2]]) * // term2 = nestedCommutator([Y, Z, X], [[0, 1], [1, 2]]) * // term3 = nestedCommutator([Z, X, Y], [[0, 1], [1, 2]]) * * @note For the LAST (innermost) pair: both indices refer to operators in the ops array * @note For ALL OTHER pairs: the first index refers to an operator in the ops array, * while the second operand is always the result of the previous calculation * * @returns The resulting operator from the nested commutator structure * * @see createNestedCommutator - For a more intuitive way to create nested commutators */ export function nestedCommutator(ops, indices) { if (ops.length < 2 || indices.length < 1) { throw new Error('Need at least two operators and one pair of indices'); } // Check all operators have same dimension const dim = ops[0].dimension; if (!ops.every(op => op.dimension === dim)) { throw new Error('All operators must have the same dimension'); } // Start with the innermost commutator const lastPair = indices[indices.length - 1]; const [innerA, innerB] = lastPair; if (innerA < 0 || innerB < 0 || innerA >= ops.length || innerB >= ops.length) { throw new Error('Invalid operator indices'); } // Calculate the innermost commutator [A, B] let result = commutator(ops[innerA], ops[innerB]); // Work backwards through remaining indices to compute nested structure for (let i = indices.length - 2; i >= 0; i--) { const [a, b] = indices[i]; if (a < 0 || a >= ops.length) { throw new Error('Invalid operator index'); } // For each subsequent level, the first index refers to an operator in ops array // and the second operand is always the result from the previous calculation result = commutator(ops[a], result); } return result; } /** * Calculates the Lie derivative L_A(B) = [A, B] * * Important in the theory of Lie algebras and quantum mechanics. * * @param A First operator (generator) * @param B Second operator * @returns The Lie derivative operator */ export function lieDerivative(A, B) { return commutator(A, B); } /** * Implements the Baker-Campbell-Hausdorff formula to calculate exp(A)exp(B) * * Formula: exp(A)exp(B) = exp(A + B + 1/2[A,B] + 1/12[A,[A,B]] - 1/12[B,[A,B]] + ...) * Essential for quantum mechanics when dealing with non-commuting operators. * * @param A First operator in exponential * @param B Second operator in exponential * @param order Maximum order of nested commutators to include * @returns Approximation of exp(A+B) based on BCH formula */ export function BCHFormula(A, B, order = 2) { if (A.dimension !== B.dimension) { throw new Error('Operators must have the same dimension for BCH formula'); } if (order < 1) { throw new Error('Order must be at least 1'); } // Start with A + B let result = addOperators(A, B); // First order: + 1/2[A,B] if (order >= 1) { const firstOrder = commutator(A, B).scale(math.complex(0.5, 0)); result = addOperators(result, firstOrder); } // Second order: + 1/12[A,[A,B]] - 1/12[B,[A,B]] if (order >= 2) { const AB = commutator(A, B); const AAB = commutator(A, AB).scale(math.complex(1 / 12, 0)); const BAB = commutator(B, AB).scale(math.complex(-1 / 12, 0)); result = addOperators(result, AAB); result = addOperators(result, BAB); } return result; } /** * Checks if two operators commute (within numerical tolerance) * * @param A First operator * @param B Second operator * @param tolerance Numerical tolerance for zero check * @returns True if operators commute */ export function operatorsCommute(A, B, tolerance = 1e-10) { const comm = commutator(A, B); // const matrix = comm.toMatrix(); // Check if all elements are close to zero // for (const row of matrix) { // for (const elem of row) { // const magnitude = math.abs(elem).re; // if (magnitude > tolerance) { // return false; // } // } // } if (comm.isZero()) { return true; } return false; } /** * Calculates the expectation value of a commutator [A,B] for a state * * Important for uncertainty relations in quantum mechanics. * * @param state Quantum state * @param A First operator * @param B Second operator * @returns Complex expectation value */ export function commutatorExpectation(state, A, B) { const commutatorOp = commutator(A, B); const resultState = commutatorOp.apply(state); return state.innerProduct(resultState); } /** * Calculates the uncertainty product ΔA·ΔB for a state * * For the uncertainty principle: ΔA·ΔB ≥ |⟨[A,B]⟩|/2 * * @param state Quantum state * @param A First operator * @param B Second operator * @returns Real number representing uncertainty product */ export function uncertaintyProduct(state, A, B) { // Calculate ΔA = √(⟨A²⟩ - ⟨A⟩²) const expectA = state.innerProduct(A.apply(state)); const expectA2 = state.innerProduct(A.compose(A).apply(state)); const varA = expectA2.re - expectA.re * expectA.re - expectA.im * expectA.im; const deltaA = Math.sqrt(Math.max(0, varA)); // Calculate ΔB = √(⟨B²⟩ - ⟨B⟩²) const expectB = state.innerProduct(B.apply(state)); const expectB2 = state.innerProduct(B.compose(B).apply(state)); const varB = expectB2.re - expectB.re * expectB.re - expectB.im * expectB.im; const deltaB = Math.sqrt(Math.max(0, varB)); return deltaA * deltaB; } /** * Checks if an operator is normal (AA† = A†A) * * Normal operators have special spectral properties. * * @param A Operator to check * @param tolerance Numerical tolerance * @returns True if operator is normal */ export function isNormalOperator(A, tolerance = 1e-10) { const ADagger = A.adjoint(); const AA_dagger = A.compose(ADagger); const A_daggerA = ADagger.compose(A); return operatorsCommute(AA_dagger, A_daggerA, tolerance); } /** * Creates an operator from its generating function: exp(iG) * * Common in quantum mechanics where G is the generator (often Hermitian) * * @param generator Generator operator G * @returns Resulting operator exp(iG) */ export function operatorFromGenerator(generator) { // Scale generator by i const iG = generator.scale(math.complex(0, 1)); // Use matrix exponential implementation from matrixOperations const matrix = iG.toMatrix(); const expMatrix = matrixExponential(matrix); return new MatrixOperator(expMatrix, 'unitary'); } /** * Creates a nested commutator in a more intuitive way * * This function provides a simpler interface for creating nested commutators * compared to the more complex indexing scheme used by nestedCommutator. * * @param ops Array of operators in the exact order they should appear in the commutator * @returns The resulting operator from the nested commutator structure * * @example * // To compute [X, [Y, Z]]: * createNestedCommutator([X, Y, Z]); * * // To compute [A, [B, [C, D]]]: * createNestedCommutator([A, B, C, D]); */ export function createNestedCommutator(ops) { if (ops.length < 3) { throw new Error('Need at least three operators for a nested commutator'); } // Check all operators have same dimension const dim = ops[0].dimension; if (!ops.every(op => op.dimension === dim)) { throw new Error('All operators must have the same dimension'); } // Start with the innermost commutator [ops[n-2], ops[n-1]] let result = commutator(ops[ops.length - 2], ops[ops.length - 1]); // Work backwards through remaining operators for (let i = ops.length - 3; i >= 0; i--) { result = commutator(ops[i], result); } return result; } /** * Creates projection operator |ψ⟩⟨ψ| from a state * * @param state Quantum state to project onto * @returns Projection operator */ export function projectionOperator(state) { const dim = state.dimension; const matrix = Array(dim).fill(null).map(() => Array(dim).fill(null).map(() => math.complex(0, 0))); // Compute |ψ⟩⟨ψ| for (let i = 0; i < dim; i++) { for (let j = 0; j < dim; j++) { matrix[i][j] = math.multiply(state.amplitudes[i], math.conj(state.amplitudes[j])); } } return new MatrixOperator(matrix, 'projection'); } //# sourceMappingURL=algebra.js.map