ts-ds-tool
Version:
Data structure and algorithm of TypeScript
93 lines (83 loc) • 3.71 kB
text/typescript
import { Graph } from "../../../../graph/Graph";
import { GraphVertex } from "../../../../graph/GraphVertex";
import { bellmanFord, getPath } from "../bellmanFord";
describe("bellmanFord test", () => {
it("bellmanFord test" , () => {
const vertexA = new GraphVertex("A");
const vertexB = new GraphVertex("B");
const vertexC = new GraphVertex("C");
const vertexD = new GraphVertex("D");
const vertexE = new GraphVertex("E");
const vertexF = new GraphVertex("F");
const vertexG = new GraphVertex("G");
const vertexH = new GraphVertex("H");
vertexA.addEdge(vertexC , 2);
vertexA.addEdge(vertexB , -3);
vertexB.addEdge(vertexF , -2);
vertexB.addEdge(vertexH , -3);
vertexC.addEdge(vertexD , 2);
vertexC.addEdge(vertexE , 3);
vertexD.addEdge(vertexB , -1);
vertexD.addEdge(vertexE , -2);
vertexE.addEdge(vertexG , 1);
vertexG.addEdge(vertexH , 3);
vertexH.addEdge(vertexF , -1);
const graph = new Graph();
graph
.addVertex(vertexA)
.addVertex(vertexB)
.addVertex(vertexC)
.addVertex(vertexD)
.addVertex(vertexE)
.addVertex(vertexF)
.addVertex(vertexG)
.addVertex(vertexH);
const result = bellmanFord(graph , vertexA);
expect(getPath(vertexA.Key , result.prev)).toEqual(["A"]);
expect(getPath(vertexB.Key , result.prev)).toEqual(["A", "B"]);
expect(getPath(vertexC.Key , result.prev)).toEqual(["A", "C"]);
expect(getPath(vertexD.Key , result.prev)).toEqual(["A", "C", "D"]);
expect(getPath(vertexE.Key , result.prev)).toEqual(["A", "C", "D", "E"]);
expect(getPath(vertexF.Key , result.prev)).toEqual(["A", "B", "H", "F"]);
expect(getPath(vertexG.Key , result.prev)).toEqual(["A", "C", "D", "E", "G"]);
expect(getPath(vertexH.Key , result.prev)).toEqual(["A", "B", "H"]);
expect(result.distance).toEqual({A: 0, B: -3, C: 2, D: 4, E: 2, F: -7, G: 3, H: -6});
expect(bellmanFord(graph).distance).toEqual({A: 0, B: -3, C: 2, D: 4, E: 2, F: -7, G: 3, H: -6});
expect(bellmanFord(graph, new GraphVertex("J"))).toEqual({});
expect(bellmanFord(new Graph())).toEqual({});
expect(bellmanFord(graph, vertexC).distance).toEqual({A: Infinity, B: 1, C: 0, D: 2, E: 0, F: -3, G: 1, H: -2});
});
it("should find in graph with negative edge weights" , () => {
const vertexA = new GraphVertex("A");
const vertexB = new GraphVertex("B");
const vertexC = new GraphVertex("C");
const vertexD = new GraphVertex("D");
const vertexE = new GraphVertex("E");
const vertexF = new GraphVertex("F");
const vertexG = new GraphVertex("G");
const vertexH = new GraphVertex("H");
vertexA.addEdge(vertexC , 2);
vertexB.addEdge(vertexF , -2);
vertexB.addEdge(vertexH , -3);
vertexB.addEdge(vertexA , -4);
vertexC.addEdge(vertexD , 2);
vertexC.addEdge(vertexE , 3);
vertexD.addEdge(vertexB , -1);
vertexD.addEdge(vertexE , -2);
vertexE.addEdge(vertexG , 1);
vertexG.addEdge(vertexH , 3);
vertexH.addEdge(vertexF , -1);
const graph = new Graph();
graph
.addVertex(vertexA)
.addVertex(vertexB)
.addVertex(vertexC)
.addVertex(vertexD)
.addVertex(vertexE)
.addVertex(vertexF)
.addVertex(vertexG)
.addVertex(vertexH);
// A -> C -> D -> B -> A
expect(() => bellmanFord(graph , vertexA)).toThrow("Graph contains negative weight cycle");
});
});