ts-combinatorics
Version:
Simple combinatorics like power set, combination, and permutation in JavaScript
595 lines (462 loc) • 18.1 kB
Markdown
# js-combinatorics-ts
It is fork of js-combinatoris-js
I forked it because it wasn't working with typescript properly. Its the Node Js fault imo but at the end I just want this package to work.
Simple combinatorics in JavaScript
## HEADS UP
`js-combinatorics` has gone ES2015 since version 1.
- native iterator instead of custom
- module. `import` instead of `require`.
- `BigInt` where possible
And from version 1.2 it is written in TypeScript. `combinatorics.js` and `combinatorics.d.ts` are compiled from `combinatorics.ts`.
APIs will change accordingly. Old versions are available in the `version0` branch.
### For Swift programmers
Check [swift-combinatorics]. More naturally implemented with generics and protocol.
[swift-combinatorics]: https://github.com/dankogai/swift-combinatorics
## SYNOPSIS
```javascript
import * as $C from "./combinatorics.js"
let it = new $C.Combination("abcdefgh", 4)
for (const elem of it) {
console.log(elem) // ['a', 'b', 'c', 'd'] ... ['e', 'f', 'g', 'h']
}
```
## Usage
load everything…
```javascript
import * as Combinatorics from "./combinatorics.js"
```
or just objects you want.
```javascript
import { Combination, Permutation } from "./combinatorics.js"
```
You don't even have to install if you `import` from CDNs.
```javascript
import * as $C from "https://cdn.jsdelivr.net/npm/js-combinatorics@1.4.5/combinatorics.min.js"
```
Since this is an ES6 module, `type="module"` is required the `<script>` tags. of your HTML files. But you can make it globally available as follows.
```html
<script type="module">
import * as $C from "combinatorics.js"
window.Combinatorics = $C
</script>
<script>
// now you can access Combinatorics
let c = new Combinatorics.Combination("abcdefgh", 4)
</script>
```
### commonjs (node.js)
use [babel] or [esm].
[babel]: https://babeljs.io
[esm]: https://github.com/standard-things/esm
- from RunKit example
```
require=require("esm")(module);
var Combinatorics=require("js-combinatorics");
```
- REPL
```shell
% node -r esm
Welcome to Node.js v14.5.0.
Type ".help" for more information.
> import * as $C from './combinatorics.js'
undefined
> $C
[Module] {
BaseN: [Function: BaseN],
CartesianProduct: [Function: CartesianProduct],
Combination: [Function: Combination],
Permutation: [Function: Permutation],
PowerSet: [Function: PowerSet],
combination: [Function: combination],
factoradic: [Function: factoradic],
factorial: [Function: factorial],
permutation: [Function: permutation],
version: '1.2.2'
}
> [...new $C.Permutation('abcd')]
[
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ],
[ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ],
[ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ],
[ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ],
[ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ],
[ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ],
[ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ],
[ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ],
[ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ],
[ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ],
[ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ],
[ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ]
]
>
```
`./combinatorics.js` is an ECMAScript module but if you still need a UMD or commonjs version, they are available as `./umd/combinatorics.js` and `./commonjs/combinatorics.js` respectively.
## Description
### Arithmetic Functions
Self-explanatory, are they not?
```javascript
import { permutation, combination, factorial, randomInteger } from "./combinatorics.js"
permutation(24, 12) // 1295295050649600
permutation(26, 13) // 64764752532480000n
combination(56, 28) // 7648690600760440
combination(58, 29) // 30067266499541040n
factorial(18) // 6402373705728000
factorial(19) // 121645100408832000n
randomInteger(6402373705727999) // random n [0,6402373705728000)
randomInteger(121645100408832000n) // ramdom n [0n, 121645100408832000n)
```
The arithmetic functions above accept both `Number` and `BigInt` (if supported). Return answers in `Number` if it is small enough to fit within `Number.MAX_SAFE_INTEGER` or `BigInt` otherwise.
#### `factoradic()` and `combinadic()`
They need a little more explanation.
```javascript
import { factoradic, combinadic } from "./combinatorics.js"
factoradic(6402373705727999) // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]
factoradic(121645100408831999n) // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
const c16_8 = combinadic(16, 8)
c16_8(0) // [ 0, 1, 2, 3, 4, 5, 6, 7]
c16_8(12870) // [ 8, 9, 10, 11, 12, 13, 14, 15]
const c58_29 = combinadic(58, 29)
c58_29(0) /* [
0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28
] */
c58_29(30067266499541039n) /* [
29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57
] */
```
`factoradic(n)` returns the [factoradic] representation of `n`. For an array `ary` with `n` elements, you can get its `n`th permutation by picking `ary[i]` for each `i` in the factoradic.
[factoradic]: https://en.wikipedia.org/wiki/Factorial_number_system
Unlike other arithmetic functions, `combinadic()` returns a function which returns `m`th [combinadic] digit of `n C k`. For an array `ary` with `n` elements, you can get its `m`th combination by picking `ary[i]` for each `i` in the combinadic.
[combinadic]: https://en.wikipedia.org/wiki/Combinatorial_number_system
### classes
The module comes with `Permutation`, `Combination`, `PowerSet`, `BaseN`, and `CartesianProduct`. You can individually `import` them or all of them via `import *`
```javascript
import * as $C from "combinatorics.js"
```
You construct an iterable object by giving a seed iterable and options. in the example below, `'abcdefgh'` is the seed and `4` is the size of the element.
```javascript
let it = new $C.Combination("abcdefgh", 4)
```
if you hate `new`, you can use `Klass.of` where `Klass` is one of the classes this module offers.
```javascript
let it = $C.Combination.of("abcdefgh", 4)
```
Once constructed, you can iterate via `for … of` statement or turn it into an array via `[...]` construct.
```javascript
;[...it] /* [
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'c', 'e' ], [ 'a', 'b', 'c', 'f' ],
[ 'a', 'b', 'c', 'g' ], [ 'a', 'b', 'c', 'h' ], [ 'a', 'b', 'd', 'e' ],
[ 'a', 'b', 'd', 'f' ], [ 'a', 'b', 'd', 'g' ], [ 'a', 'b', 'd', 'h' ],
[ 'a', 'b', 'e', 'f' ], [ 'a', 'b', 'e', 'g' ], [ 'a', 'b', 'e', 'h' ],
[ 'a', 'b', 'f', 'g' ], [ 'a', 'b', 'f', 'h' ], [ 'a', 'b', 'g', 'h' ],
[ 'a', 'c', 'd', 'e' ], [ 'a', 'c', 'd', 'f' ], [ 'a', 'c', 'd', 'g' ],
[ 'a', 'c', 'd', 'h' ], [ 'a', 'c', 'e', 'f' ], [ 'a', 'c', 'e', 'g' ],
[ 'a', 'c', 'e', 'h' ], [ 'a', 'c', 'f', 'g' ], [ 'a', 'c', 'f', 'h' ],
[ 'a', 'c', 'g', 'h' ], [ 'a', 'd', 'e', 'f' ], [ 'a', 'd', 'e', 'g' ],
[ 'a', 'd', 'e', 'h' ], [ 'a', 'd', 'f', 'g' ], [ 'a', 'd', 'f', 'h' ],
[ 'a', 'd', 'g', 'h' ], [ 'a', 'e', 'f', 'g' ], [ 'a', 'e', 'f', 'h' ],
[ 'a', 'e', 'g', 'h' ], [ 'a', 'f', 'g', 'h' ], [ 'b', 'c', 'd', 'e' ],
[ 'b', 'c', 'd', 'f' ], [ 'b', 'c', 'd', 'g' ], [ 'b', 'c', 'd', 'h' ],
[ 'b', 'c', 'e', 'f' ], [ 'b', 'c', 'e', 'g' ], [ 'b', 'c', 'e', 'h' ],
[ 'b', 'c', 'f', 'g' ], [ 'b', 'c', 'f', 'h' ], [ 'b', 'c', 'g', 'h' ],
[ 'b', 'd', 'e', 'f' ], [ 'b', 'd', 'e', 'g' ], [ 'b', 'd', 'e', 'h' ],
[ 'b', 'd', 'f', 'g' ], [ 'b', 'd', 'f', 'h' ], [ 'b', 'd', 'g', 'h' ],
[ 'b', 'e', 'f', 'g' ], [ 'b', 'e', 'f', 'h' ], [ 'b', 'e', 'g', 'h' ],
[ 'b', 'f', 'g', 'h' ], [ 'c', 'd', 'e', 'f' ], [ 'c', 'd', 'e', 'g' ],
[ 'c', 'd', 'e', 'h' ], [ 'c', 'd', 'f', 'g' ], [ 'c', 'd', 'f', 'h' ],
[ 'c', 'd', 'g', 'h' ], [ 'c', 'e', 'f', 'g' ], [ 'c', 'e', 'f', 'h' ],
[ 'c', 'e', 'g', 'h' ], [ 'c', 'f', 'g', 'h' ], [ 'd', 'e', 'f', 'g' ],
[ 'd', 'e', 'f', 'h' ], [ 'd', 'e', 'g', 'h' ], [ 'd', 'f', 'g', 'h' ],
[ 'e', 'f', 'g', 'h' ]
] */
```
#### `.length`
The object has `.length` so you don't have to iterate to count the elements.
```javascript
it.length // 70
```
#### `.nth()`
And the object has `.nth(n)` method so you can random-access each element. This is the equivalent of subscript in `Array`.
```javascript
it.nth(0) // [ 'a', 'b', 'c', 'd' ];
it.nth(69) // [ 'a', 'd', 'c', 'h' ];
```
`nth()` accepts both `Number` and `BigInt`.
```javascript
it.nth(69n) // [ 'a', 'd', 'c', 'h' ];
```
`nth()` also accepts negative indexes. In which case `n` is `(-n)th` element from `.length`.
```javascript
it.nth(-1) // [ 'a', 'd', 'c', 'h' ]
it.nth(-70) // [ 'a', 'b', 'c', 'd' ]
```
#### `.sample()`
And `.sample()` picks random element, which is defined as `.nth(randomInteger(.length))`.
```javascript
it.sample() // one of ['a', 'b', 'c', 'd'] ... ['a', 'd', 'e', 'f']
```
### Beyond `Number.MAX_SAFE_INTEGER`
Occasionally you need `BigInt` to access elements beyond `Number.MAX_SAFE_INTEGER`.
```javascript
it = new $C.Permutation("abcdefghijklmnopqrstuvwxyz")
it.length // 403291461126605635584000000n
```
You can still access elements before `Number.MAX_SAFE_INTEGER` in `Number`.
```javascript
it.nth(0) /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x',
'y', 'z'
] */
it.nth(9007199254740990) /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'i', 'p', 'n', 'r', 'z',
'm', 'h', 'y', 'x', 'u', 't',
'l', 'j', 'k', 'q', 's', 'o',
'v', 'w'
] */
```
But how are you goint to acccess elements beyond that? Just use `BigInt`.
```javascript
it.nth(9007199254740991n) /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'i', 'p', 'n', 'r', 'z',
'm', 'h', 'y', 'x', 'u', 't',
'l', 'j', 'k', 'q', 's', 'o',
'w', 'v'
] */
it.nth(it.length - 1n) /* [
'z', 'y', 'x', 'w', 'v', 'u',
't', 's', 'r', 'q', 'p', 'o',
'n', 'm', 'l', 'k', 'j', 'i',
'h', 'g', 'f', 'e', 'd', 'c',
'b', 'a'
] */
```
You can tell if you need `BigInt` via `.isBig`.
```javascript
new $C.Permutation("0123456789").isBig // false
new $C.Permutation("abcdefghijklmnopqrstuvwxyz").isBig // true
```
You can also check if it is safe on your platform via `.isSafe`.
```javascript
// true if BigInt is supported
new $C.Permutation("abcdefghijklmnopqrstuvwxyz").isSafe
```
This module still runs on platforms without `BigInt` (notably Safari 13 or below), but its operation is no longer guaranteed if `.isSafe` is false.
### class `Permutation`
An iterable which permutes a given iterable.
`new Permutation(seed, size)`
- `seed`: the seed iterable. `[...seed]` becomes the seed array.
- `size`: the number of elements in the iterated element. defaults to `seed.length`
```javascript
import { Permutation } from "./combinatorics.js"
let it = new Permutation("abcd") // size 4 is assumed4
it.length // 24
;[...it] /* [
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ],
[ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ],
[ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ],
[ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ],
[ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ],
[ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ],
[ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ],
[ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ],
[ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ],
[ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ],
[ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ],
[ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ]
] */
it = new Permutation("abcdefghijklmnopqrstuvwxyz0123456789")
it.length // 371993326789901217467999448150835200000000n
it.nth(371993326789901217467999448150835199999999n) /* [
'9', '8', '7', '6', '5', '4', '3',
'2', '1', '0', 'z', 'y', 'x', 'w',
'v', 'u', 't', 's', 'r', 'q', 'p',
'o', 'n', 'm', 'l', 'k', 'j', 'i',
'h', 'g', 'f', 'e', 'd', 'c', 'b',
'a'
] */
```
Making a permutation of the iterable then taking its sample is functionally the same as [Fisher–Yates shuffle] of the iterable. Instead of shuffling the deck, it make all possible cases available and let you pick one.
```javascript
it.sample() // something between ['a','b', ... '9'] and ['9','8',....'a']
```
It is in fact a little better because `.sample()` only needs one random number (between 0 and `.length - 1`) while Fisher–Yates needs `n` random numbers.
[fisher–yates shuffle]: https://en.wikipedia.org/wiki/Fisher–Yates_shuffle
### class `Combination`
An iterable which emits a combination of a given iterable.
`new Combination(seed, size)`
- `seed`: the seed iterable.
- `size`: the number of elements in the iterated element.
```javascript
import { Combination } from "./combinatorics.js"
let it = new Combination("abcd", 2)
it.length // 6
;[...it] /* [
[ 'a', 'b' ],
[ 'a', 'c' ],
[ 'a', 'd' ],
[ 'b', 'c' ],
[ 'b', 'd' ],
[ 'c', 'd' ]
] */
let a100 = Array(100)
.fill(0)
.map((v, i) => i) // [0, 1, ...99]
it = new Combination(a100, 50)
it.length // 100891344545564193334812497256n
it.nth(100891344545564193334812497255n) /* [
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99
] */
```
### class `PowerSet`
An iterable which emits each element of its power set.
`new PowerSet(seed)`
- `seed`: the seed iterable.
```javascript
import { PowerSet } from "./combinatorics.js"
let it = new PowerSet("abc")
it.length // 8
;[...it] /* [
[],
[ 'a' ],
[ 'b' ],
[ 'a', 'b' ],
[ 'c' ],
[ 'a', 'c' ],
[ 'b', 'c' ],
[ 'a', 'b', 'c' ]
] */
it = new PowerSet("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/")
it.length // 18446744073709551616n
it.nth(18446744073709551615n) /* [
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R',
'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a',
'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9', '+',
'/'
] */
```
### class `BaseN`
An iterable which emits all numbers in the given system.
`new BaseN(seed, size)`
- `seed`: the seed iterable whose elements represent digits.
- `size`: the number of digits
```javascript
import { BaseN } from "./combinatorics.js"
let it = new BaseN("abc", 3)
it.length // 27
;[...it] /* [
[ 'a', 'a', 'a' ], [ 'b', 'a', 'a' ],
[ 'c', 'a', 'a' ], [ 'a', 'b', 'a' ],
[ 'b', 'b', 'a' ], [ 'c', 'b', 'a' ],
[ 'a', 'c', 'a' ], [ 'b', 'c', 'a' ],
[ 'c', 'c', 'a' ], [ 'a', 'a', 'b' ],
[ 'b', 'a', 'b' ], [ 'c', 'a', 'b' ],
[ 'a', 'b', 'b' ], [ 'b', 'b', 'b' ],
[ 'c', 'b', 'b' ], [ 'a', 'c', 'b' ],
[ 'b', 'c', 'b' ], [ 'c', 'c', 'b' ],
[ 'a', 'a', 'c' ], [ 'b', 'a', 'c' ],
[ 'c', 'a', 'c' ], [ 'a', 'b', 'c' ],
[ 'b', 'b', 'c' ], [ 'c', 'b', 'c' ],
[ 'a', 'c', 'c' ], [ 'b', 'c', 'c' ],
[ 'c', 'c', 'c' ]
] */
it = BaseN("0123456789abcdef", 16)
it.length // 18446744073709551616n
it.nth(18446744073709551615n) /* [
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f'
] */
```
### class `CartesianProduct`
A [cartesian product] of given sets.
[cartesian product]: https://en.wikipedia.org/wiki/Cartesian_product
`new CartesianProduct(...args)`
- `args`: iterables that represent sets
```javascript
import { CartesianProduct } from "./combinatorics.js"
let it = new CartesianProduct("012", "abc", "xyz")
it.length // 27
;[...it] /* [
[ '0', 'a', 'x' ], [ '1', 'a', 'x' ],
[ '2', 'a', 'x' ], [ '0', 'b', 'x' ],
[ '1', 'b', 'x' ], [ '2', 'b', 'x' ],
[ '0', 'c', 'x' ], [ '1', 'c', 'x' ],
[ '2', 'c', 'x' ], [ '0', 'a', 'y' ],
[ '1', 'a', 'y' ], [ '2', 'a', 'y' ],
[ '0', 'b', 'y' ], [ '1', 'b', 'y' ],
[ '2', 'b', 'y' ], [ '0', 'c', 'y' ],
[ '1', 'c', 'y' ], [ '2', 'c', 'y' ],
[ '0', 'a', 'z' ], [ '1', 'a', 'z' ],
[ '2', 'a', 'z' ], [ '0', 'b', 'z' ],
[ '1', 'b', 'z' ], [ '2', 'b', 'z' ],
[ '0', 'c', 'z' ], [ '1', 'c', 'z' ],
[ '2', 'c', 'z' ]
] */
```
Since the number of arguments to `CartesianProduct` is variable, it is sometimes helpful to give a single array with all arguments. But you cannot `new ctor.apply(null, args)` this case. To mitigate that, you can use `.from()`.
```javascript
let a16 = Array(16).fill("0123456789abcdef")
it = CartesianProduct.from(a16)
it.length // 18446744073709551616n
it.nth(18446744073709551615n) /* [
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f'
] */
```
## What's missing from version 0.x?
- `bigCombination` is gone because all classes now can handle big -- combinatorially big! -- cases thanks to [BigInt] support getting standard. Safari 13 and below is a major exception but BigInt is coming to Safari 14 and up.
[bigint]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
- `permutationCombination` is gone because the name is misleading and it is now trivially easy to reconstruct as follow:
```javascript
class permutationCombination {
constructor(seed) {
this.seed = [...seed]
}
[Symbol.iterator]() {
return (function* (it) {
for (let i = 1, l = it.length; i <= l; i++) {
yield* new Permutation(it, i)
}
})(this.seed)
}
}
```
- `js-combinatorics` is now natively iterable. Meaning its custom iterators are gone -- with its methods like `.map` and `.filter`. JS iterators are very minimalistic with only `[...]` and `for ... of`. But don't worry. There are several ways to make those functional methods back again.
For instance, You can use [js-xiterable] like so:
[js-xiterable]: https://github.com/dankogai/js-xiterable
```javascript
import {xiterable as $X} from
'https://cdn.jsdelivr.net/npm/js-xiterable@0.0.3/xiterable.min.js';
import {Permutation} from 'combinatorics.js';
let it = new Permutation('abcd');
let words = $X(it).map(v=>v.join(''))
for (const word of words)) console.log(word)
/*
abcd
abdc
...
dcab
dcba
*/
```