UNPKG

ts-combinatorics

Version:

Simple combinatorics like power set, combination, and permutation in JavaScript

595 lines (462 loc) 18.1 kB
# js-combinatorics-ts It is fork of js-combinatoris-js I forked it because it wasn't working with typescript properly. Its the Node Js fault imo but at the end I just want this package to work. Simple combinatorics in JavaScript ## HEADS UP `js-combinatorics` has gone ES2015 since version 1. - native iterator instead of custom - module. `import` instead of `require`. - `BigInt` where possible And from version 1.2 it is written in TypeScript. `combinatorics.js` and `combinatorics.d.ts` are compiled from `combinatorics.ts`. APIs will change accordingly. Old versions are available in the `version0` branch. ### For Swift programmers Check [swift-combinatorics]. More naturally implemented with generics and protocol. [swift-combinatorics]: https://github.com/dankogai/swift-combinatorics ## SYNOPSIS ```javascript import * as $C from "./combinatorics.js" let it = new $C.Combination("abcdefgh", 4) for (const elem of it) { console.log(elem) // ['a', 'b', 'c', 'd'] ... ['e', 'f', 'g', 'h'] } ``` ## Usage load everything… ```javascript import * as Combinatorics from "./combinatorics.js" ``` or just objects you want. ```javascript import { Combination, Permutation } from "./combinatorics.js" ``` You don't even have to install if you `import` from CDNs. ```javascript import * as $C from "https://cdn.jsdelivr.net/npm/js-combinatorics@1.4.5/combinatorics.min.js" ``` Since this is an ES6 module, `type="module"` is required the `<script>` tags. of your HTML files. But you can make it globally available as follows. ```html <script type="module"> import * as $C from "combinatorics.js" window.Combinatorics = $C </script> <script> // now you can access Combinatorics let c = new Combinatorics.Combination("abcdefgh", 4) </script> ``` ### commonjs (node.js) use [babel] or [esm]. [babel]: https://babeljs.io [esm]: https://github.com/standard-things/esm - from RunKit example ``` require=require("esm")(module); var Combinatorics=require("js-combinatorics"); ``` - REPL ```shell % node -r esm Welcome to Node.js v14.5.0. Type ".help" for more information. > import * as $C from './combinatorics.js' undefined > $C [Module] { BaseN: [Function: BaseN], CartesianProduct: [Function: CartesianProduct], Combination: [Function: Combination], Permutation: [Function: Permutation], PowerSet: [Function: PowerSet], combination: [Function: combination], factoradic: [Function: factoradic], factorial: [Function: factorial], permutation: [Function: permutation], version: '1.2.2' } > [...new $C.Permutation('abcd')] [ [ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ], [ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ], [ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ], [ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ], [ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ], [ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ], [ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ], [ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ], [ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ], [ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ], [ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ], [ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ] ] > ``` `./combinatorics.js` is an ECMAScript module but if you still need a UMD or commonjs version, they are available as `./umd/combinatorics.js` and `./commonjs/combinatorics.js` respectively. ## Description ### Arithmetic Functions Self-explanatory, are they not? ```javascript import { permutation, combination, factorial, randomInteger } from "./combinatorics.js" permutation(24, 12) // 1295295050649600 permutation(26, 13) // 64764752532480000n combination(56, 28) // 7648690600760440 combination(58, 29) // 30067266499541040n factorial(18) // 6402373705728000 factorial(19) // 121645100408832000n randomInteger(6402373705727999) // random n [0,6402373705728000) randomInteger(121645100408832000n) // ramdom n [0n, 121645100408832000n) ``` The arithmetic functions above accept both `Number` and `BigInt` (if supported). Return answers in `Number` if it is small enough to fit within `Number.MAX_SAFE_INTEGER` or `BigInt` otherwise. #### `factoradic()` and `combinadic()` They need a little more explanation. ```javascript import { factoradic, combinadic } from "./combinatorics.js" factoradic(6402373705727999) // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] factoradic(121645100408831999n) // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] const c16_8 = combinadic(16, 8) c16_8(0) // [ 0, 1, 2, 3, 4, 5, 6, 7] c16_8(12870) // [ 8, 9, 10, 11, 12, 13, 14, 15] const c58_29 = combinadic(58, 29) c58_29(0) /* [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] */ c58_29(30067266499541039n) /* [ 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 ] */ ``` `factoradic(n)` returns the [factoradic] representation of `n`. For an array `ary` with `n` elements, you can get its `n`th permutation by picking `ary[i]` for each `i` in the factoradic. [factoradic]: https://en.wikipedia.org/wiki/Factorial_number_system Unlike other arithmetic functions, `combinadic()` returns a function which returns `m`th [combinadic] digit of `n C k`. For an array `ary` with `n` elements, you can get its `m`th combination by picking `ary[i]` for each `i` in the combinadic. [combinadic]: https://en.wikipedia.org/wiki/Combinatorial_number_system ### classes The module comes with `Permutation`, `Combination`, `PowerSet`, `BaseN`, and `CartesianProduct`. You can individually `import` them or all of them via `import *` ```javascript import * as $C from "combinatorics.js" ``` You construct an iterable object by giving a seed iterable and options. in the example below, `'abcdefgh'` is the seed and `4` is the size of the element. ```javascript let it = new $C.Combination("abcdefgh", 4) ``` if you hate `new`, you can use `Klass.of` where `Klass` is one of the classes this module offers. ```javascript let it = $C.Combination.of("abcdefgh", 4) ``` Once constructed, you can iterate via `for … of` statement or turn it into an array via `[...]` construct. ```javascript ;[...it] /* [ [ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'c', 'e' ], [ 'a', 'b', 'c', 'f' ], [ 'a', 'b', 'c', 'g' ], [ 'a', 'b', 'c', 'h' ], [ 'a', 'b', 'd', 'e' ], [ 'a', 'b', 'd', 'f' ], [ 'a', 'b', 'd', 'g' ], [ 'a', 'b', 'd', 'h' ], [ 'a', 'b', 'e', 'f' ], [ 'a', 'b', 'e', 'g' ], [ 'a', 'b', 'e', 'h' ], [ 'a', 'b', 'f', 'g' ], [ 'a', 'b', 'f', 'h' ], [ 'a', 'b', 'g', 'h' ], [ 'a', 'c', 'd', 'e' ], [ 'a', 'c', 'd', 'f' ], [ 'a', 'c', 'd', 'g' ], [ 'a', 'c', 'd', 'h' ], [ 'a', 'c', 'e', 'f' ], [ 'a', 'c', 'e', 'g' ], [ 'a', 'c', 'e', 'h' ], [ 'a', 'c', 'f', 'g' ], [ 'a', 'c', 'f', 'h' ], [ 'a', 'c', 'g', 'h' ], [ 'a', 'd', 'e', 'f' ], [ 'a', 'd', 'e', 'g' ], [ 'a', 'd', 'e', 'h' ], [ 'a', 'd', 'f', 'g' ], [ 'a', 'd', 'f', 'h' ], [ 'a', 'd', 'g', 'h' ], [ 'a', 'e', 'f', 'g' ], [ 'a', 'e', 'f', 'h' ], [ 'a', 'e', 'g', 'h' ], [ 'a', 'f', 'g', 'h' ], [ 'b', 'c', 'd', 'e' ], [ 'b', 'c', 'd', 'f' ], [ 'b', 'c', 'd', 'g' ], [ 'b', 'c', 'd', 'h' ], [ 'b', 'c', 'e', 'f' ], [ 'b', 'c', 'e', 'g' ], [ 'b', 'c', 'e', 'h' ], [ 'b', 'c', 'f', 'g' ], [ 'b', 'c', 'f', 'h' ], [ 'b', 'c', 'g', 'h' ], [ 'b', 'd', 'e', 'f' ], [ 'b', 'd', 'e', 'g' ], [ 'b', 'd', 'e', 'h' ], [ 'b', 'd', 'f', 'g' ], [ 'b', 'd', 'f', 'h' ], [ 'b', 'd', 'g', 'h' ], [ 'b', 'e', 'f', 'g' ], [ 'b', 'e', 'f', 'h' ], [ 'b', 'e', 'g', 'h' ], [ 'b', 'f', 'g', 'h' ], [ 'c', 'd', 'e', 'f' ], [ 'c', 'd', 'e', 'g' ], [ 'c', 'd', 'e', 'h' ], [ 'c', 'd', 'f', 'g' ], [ 'c', 'd', 'f', 'h' ], [ 'c', 'd', 'g', 'h' ], [ 'c', 'e', 'f', 'g' ], [ 'c', 'e', 'f', 'h' ], [ 'c', 'e', 'g', 'h' ], [ 'c', 'f', 'g', 'h' ], [ 'd', 'e', 'f', 'g' ], [ 'd', 'e', 'f', 'h' ], [ 'd', 'e', 'g', 'h' ], [ 'd', 'f', 'g', 'h' ], [ 'e', 'f', 'g', 'h' ] ] */ ``` #### `.length` The object has `.length` so you don't have to iterate to count the elements. ```javascript it.length // 70 ``` #### `.nth()` And the object has `.nth(n)` method so you can random-access each element. This is the equivalent of subscript in `Array`. ```javascript it.nth(0) // [ 'a', 'b', 'c', 'd' ]; it.nth(69) // [ 'a', 'd', 'c', 'h' ]; ``` `nth()` accepts both `Number` and `BigInt`. ```javascript it.nth(69n) // [ 'a', 'd', 'c', 'h' ]; ``` `nth()` also accepts negative indexes. In which case `n` is `(-n)th` element from `.length`. ```javascript it.nth(-1) // [ 'a', 'd', 'c', 'h' ] it.nth(-70) // [ 'a', 'b', 'c', 'd' ] ``` #### `.sample()` And `.sample()` picks random element, which is defined as `.nth(randomInteger(.length))`. ```javascript it.sample() // one of ['a', 'b', 'c', 'd'] ... ['a', 'd', 'e', 'f'] ``` ### Beyond `Number.MAX_SAFE_INTEGER` Occasionally you need `BigInt` to access elements beyond `Number.MAX_SAFE_INTEGER`. ```javascript it = new $C.Permutation("abcdefghijklmnopqrstuvwxyz") it.length // 403291461126605635584000000n ``` You can still access elements before `Number.MAX_SAFE_INTEGER` in `Number`. ```javascript it.nth(0) /* [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' ] */ it.nth(9007199254740990) /* [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'i', 'p', 'n', 'r', 'z', 'm', 'h', 'y', 'x', 'u', 't', 'l', 'j', 'k', 'q', 's', 'o', 'v', 'w' ] */ ``` But how are you goint to acccess elements beyond that? Just use `BigInt`. ```javascript it.nth(9007199254740991n) /* [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'i', 'p', 'n', 'r', 'z', 'm', 'h', 'y', 'x', 'u', 't', 'l', 'j', 'k', 'q', 's', 'o', 'w', 'v' ] */ it.nth(it.length - 1n) /* [ 'z', 'y', 'x', 'w', 'v', 'u', 't', 's', 'r', 'q', 'p', 'o', 'n', 'm', 'l', 'k', 'j', 'i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a' ] */ ``` You can tell if you need `BigInt` via `.isBig`. ```javascript new $C.Permutation("0123456789").isBig // false new $C.Permutation("abcdefghijklmnopqrstuvwxyz").isBig // true ``` You can also check if it is safe on your platform via `.isSafe`. ```javascript // true if BigInt is supported new $C.Permutation("abcdefghijklmnopqrstuvwxyz").isSafe ``` This module still runs on platforms without `BigInt` (notably Safari 13 or below), but its operation is no longer guaranteed if `.isSafe` is false. ### class `Permutation` An iterable which permutes a given iterable. `new Permutation(seed, size)` - `seed`: the seed iterable. `[...seed]` becomes the seed array. - `size`: the number of elements in the iterated element. defaults to `seed.length` ```javascript import { Permutation } from "./combinatorics.js" let it = new Permutation("abcd") // size 4 is assumed4 it.length // 24 ;[...it] /* [ [ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ], [ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ], [ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ], [ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ], [ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ], [ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ], [ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ], [ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ], [ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ], [ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ], [ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ], [ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ] ] */ it = new Permutation("abcdefghijklmnopqrstuvwxyz0123456789") it.length // 371993326789901217467999448150835200000000n it.nth(371993326789901217467999448150835199999999n) /* [ '9', '8', '7', '6', '5', '4', '3', '2', '1', '0', 'z', 'y', 'x', 'w', 'v', 'u', 't', 's', 'r', 'q', 'p', 'o', 'n', 'm', 'l', 'k', 'j', 'i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a' ] */ ``` Making a permutation of the iterable then taking its sample is functionally the same as [Fisher–Yates shuffle] of the iterable. Instead of shuffling the deck, it make all possible cases available and let you pick one. ```javascript it.sample() // something between ['a','b', ... '9'] and ['9','8',....'a'] ``` It is in fact a little better because `.sample()` only needs one random number (between 0 and `.length - 1`) while Fisher–Yates needs `n` random numbers. [fisher–yates shuffle]: https://en.wikipedia.org/wiki/Fisher–Yates_shuffle ### class `Combination` An iterable which emits a combination of a given iterable. `new Combination(seed, size)` - `seed`: the seed iterable. - `size`: the number of elements in the iterated element. ```javascript import { Combination } from "./combinatorics.js" let it = new Combination("abcd", 2) it.length // 6 ;[...it] /* [ [ 'a', 'b' ], [ 'a', 'c' ], [ 'a', 'd' ], [ 'b', 'c' ], [ 'b', 'd' ], [ 'c', 'd' ] ] */ let a100 = Array(100) .fill(0) .map((v, i) => i) // [0, 1, ...99] it = new Combination(a100, 50) it.length // 100891344545564193334812497256n it.nth(100891344545564193334812497255n) /* [ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ] */ ``` ### class `PowerSet` An iterable which emits each element of its power set. `new PowerSet(seed)` - `seed`: the seed iterable. ```javascript import { PowerSet } from "./combinatorics.js" let it = new PowerSet("abc") it.length // 8 ;[...it] /* [ [], [ 'a' ], [ 'b' ], [ 'a', 'b' ], [ 'c' ], [ 'a', 'c' ], [ 'b', 'c' ], [ 'a', 'b', 'c' ] ] */ it = new PowerSet("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/") it.length // 18446744073709551616n it.nth(18446744073709551615n) /* [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/' ] */ ``` ### class `BaseN` An iterable which emits all numbers in the given system. `new BaseN(seed, size)` - `seed`: the seed iterable whose elements represent digits. - `size`: the number of digits ```javascript import { BaseN } from "./combinatorics.js" let it = new BaseN("abc", 3) it.length // 27 ;[...it] /* [ [ 'a', 'a', 'a' ], [ 'b', 'a', 'a' ], [ 'c', 'a', 'a' ], [ 'a', 'b', 'a' ], [ 'b', 'b', 'a' ], [ 'c', 'b', 'a' ], [ 'a', 'c', 'a' ], [ 'b', 'c', 'a' ], [ 'c', 'c', 'a' ], [ 'a', 'a', 'b' ], [ 'b', 'a', 'b' ], [ 'c', 'a', 'b' ], [ 'a', 'b', 'b' ], [ 'b', 'b', 'b' ], [ 'c', 'b', 'b' ], [ 'a', 'c', 'b' ], [ 'b', 'c', 'b' ], [ 'c', 'c', 'b' ], [ 'a', 'a', 'c' ], [ 'b', 'a', 'c' ], [ 'c', 'a', 'c' ], [ 'a', 'b', 'c' ], [ 'b', 'b', 'c' ], [ 'c', 'b', 'c' ], [ 'a', 'c', 'c' ], [ 'b', 'c', 'c' ], [ 'c', 'c', 'c' ] ] */ it = BaseN("0123456789abcdef", 16) it.length // 18446744073709551616n it.nth(18446744073709551615n) /* [ 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f' ] */ ``` ### class `CartesianProduct` A [cartesian product] of given sets. [cartesian product]: https://en.wikipedia.org/wiki/Cartesian_product `new CartesianProduct(...args)` - `args`: iterables that represent sets ```javascript import { CartesianProduct } from "./combinatorics.js" let it = new CartesianProduct("012", "abc", "xyz") it.length // 27 ;[...it] /* [ [ '0', 'a', 'x' ], [ '1', 'a', 'x' ], [ '2', 'a', 'x' ], [ '0', 'b', 'x' ], [ '1', 'b', 'x' ], [ '2', 'b', 'x' ], [ '0', 'c', 'x' ], [ '1', 'c', 'x' ], [ '2', 'c', 'x' ], [ '0', 'a', 'y' ], [ '1', 'a', 'y' ], [ '2', 'a', 'y' ], [ '0', 'b', 'y' ], [ '1', 'b', 'y' ], [ '2', 'b', 'y' ], [ '0', 'c', 'y' ], [ '1', 'c', 'y' ], [ '2', 'c', 'y' ], [ '0', 'a', 'z' ], [ '1', 'a', 'z' ], [ '2', 'a', 'z' ], [ '0', 'b', 'z' ], [ '1', 'b', 'z' ], [ '2', 'b', 'z' ], [ '0', 'c', 'z' ], [ '1', 'c', 'z' ], [ '2', 'c', 'z' ] ] */ ``` Since the number of arguments to `CartesianProduct` is variable, it is sometimes helpful to give a single array with all arguments. But you cannot `new ctor.apply(null, args)` this case. To mitigate that, you can use `.from()`. ```javascript let a16 = Array(16).fill("0123456789abcdef") it = CartesianProduct.from(a16) it.length // 18446744073709551616n it.nth(18446744073709551615n) /* [ 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f', 'f' ] */ ``` ## What's missing from version 0.x? - `bigCombination` is gone because all classes now can handle big -- combinatorially big! -- cases thanks to [BigInt] support getting standard. Safari 13 and below is a major exception but BigInt is coming to Safari 14 and up. [bigint]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt - `permutationCombination` is gone because the name is misleading and it is now trivially easy to reconstruct as follow: ```javascript class permutationCombination { constructor(seed) { this.seed = [...seed] } [Symbol.iterator]() { return (function* (it) { for (let i = 1, l = it.length; i <= l; i++) { yield* new Permutation(it, i) } })(this.seed) } } ``` - `js-combinatorics` is now natively iterable. Meaning its custom iterators are gone -- with its methods like `.map` and `.filter`. JS iterators are very minimalistic with only `[...]` and `for ... of`. But don't worry. There are several ways to make those functional methods back again. For instance, You can use [js-xiterable] like so: [js-xiterable]: https://github.com/dankogai/js-xiterable ```javascript import {xiterable as $X} from 'https://cdn.jsdelivr.net/npm/js-xiterable@0.0.3/xiterable.min.js'; import {Permutation} from 'combinatorics.js'; let it = new Permutation('abcd'); let words = $X(it).map(v=>v.join('')) for (const word of words)) console.log(word) /* abcd abdc ... dcab dcba */ ```