UNPKG

trie-typed

Version:
612 lines (611 loc) 23.1 kB
"use strict"; /** * data-structure-typed * * @author Pablo Zeng * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com> * @license MIT License */ Object.defineProperty(exports, "__esModule", { value: true }); exports.AVLTree = exports.AVLTreeNode = void 0; const bst_1 = require("./bst"); /** * Represents a Node in an AVL (Adelson-Velsky and Landis) Tree. * It extends a BSTNode and ensures the 'height' property is maintained. * * @template K - The type of the key. * @template V - The type of the value. */ class AVLTreeNode extends bst_1.BSTNode { /** * Creates an instance of AVLTreeNode. * @remarks Time O(1), Space O(1) * * @param key - The key of the node. * @param [value] - The value associated with the key. */ constructor(key, value) { super(key, value); this.parent = undefined; this._left = undefined; this._right = undefined; } /** * Gets the left child of the node. * @remarks Time O(1), Space O(1) * * @returns The left child. */ get left() { return this._left; } /** * Sets the left child of the node and updates its parent reference. * @remarks Time O(1), Space O(1) * * @param v - The node to set as the left child. */ set left(v) { if (v) { v.parent = this; } this._left = v; } /** * Gets the right child of the node. * @remarks Time O(1), Space O(1) * * @returns The right child. */ get right() { return this._right; } /** * Sets the right child of the node and updates its parent reference. * @remarks Time O(1), Space O(1) * * @param v - The node to set as the right child. */ set right(v) { if (v) { v.parent = this; } this._right = v; } } exports.AVLTreeNode = AVLTreeNode; /** * Represents a self-balancing AVL (Adelson-Velsky and Landis) Tree. * This tree extends BST and performs rotations on add/delete to maintain balance. * * @template K - The type of the key. * @template V - The type of the value. * @template R - The type of the raw data object (if using `toEntryFn`). * * 1. Height-Balanced: Each node's left and right subtrees differ in height by no more than one. * 2. Automatic Rebalancing: AVL trees rebalance themselves automatically during insertions and deletions. * 3. Rotations for Balancing: Utilizes rotations (single or double) to maintain balance after updates. * 4. Order Preservation: Maintains the binary search tree property where left child values are less than the parent, and right child values are greater. * 5. Efficient Lookups: Offers O(log n) search time, where 'n' is the number of nodes, due to its balanced nature. * 6. Complex Insertions and Deletions: Due to rebalancing, these operations are more complex than in a regular BST. * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.@example * // Find elements in a range * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding. * type Datum = { timestamp: Date; temperature: number }; * // Fixed dataset of CPU temperature readings * const cpuData: Datum[] = [ * { timestamp: new Date('2024-12-02T00:00:00'), temperature: 55.1 }, * { timestamp: new Date('2024-12-02T00:01:00'), temperature: 56.3 }, * { timestamp: new Date('2024-12-02T00:02:00'), temperature: 54.8 }, * { timestamp: new Date('2024-12-02T00:03:00'), temperature: 57.2 }, * { timestamp: new Date('2024-12-02T00:04:00'), temperature: 58.0 }, * { timestamp: new Date('2024-12-02T00:05:00'), temperature: 59.4 }, * { timestamp: new Date('2024-12-02T00:06:00'), temperature: 60.1 }, * { timestamp: new Date('2024-12-02T00:07:00'), temperature: 61.3 }, * { timestamp: new Date('2024-12-02T00:08:00'), temperature: 62.0 }, * { timestamp: new Date('2024-12-02T00:09:00'), temperature: 63.5 }, * { timestamp: new Date('2024-12-02T00:10:00'), temperature: 64.0 }, * { timestamp: new Date('2024-12-02T00:11:00'), temperature: 62.8 }, * { timestamp: new Date('2024-12-02T00:12:00'), temperature: 61.5 }, * { timestamp: new Date('2024-12-02T00:13:00'), temperature: 60.2 }, * { timestamp: new Date('2024-12-02T00:14:00'), temperature: 59.8 }, * { timestamp: new Date('2024-12-02T00:15:00'), temperature: 58.6 }, * { timestamp: new Date('2024-12-02T00:16:00'), temperature: 57.4 }, * { timestamp: new Date('2024-12-02T00:17:00'), temperature: 56.2 }, * { timestamp: new Date('2024-12-02T00:18:00'), temperature: 55.7 }, * { timestamp: new Date('2024-12-02T00:19:00'), temperature: 54.5 }, * { timestamp: new Date('2024-12-02T00:20:00'), temperature: 53.2 }, * { timestamp: new Date('2024-12-02T00:21:00'), temperature: 52.8 }, * { timestamp: new Date('2024-12-02T00:22:00'), temperature: 51.9 }, * { timestamp: new Date('2024-12-02T00:23:00'), temperature: 50.5 }, * { timestamp: new Date('2024-12-02T00:24:00'), temperature: 49.8 }, * { timestamp: new Date('2024-12-02T00:25:00'), temperature: 48.7 }, * { timestamp: new Date('2024-12-02T00:26:00'), temperature: 47.5 }, * { timestamp: new Date('2024-12-02T00:27:00'), temperature: 46.3 }, * { timestamp: new Date('2024-12-02T00:28:00'), temperature: 45.9 }, * { timestamp: new Date('2024-12-02T00:29:00'), temperature: 45.0 } * ]; * * // Create an AVL tree to store CPU temperature data * const cpuTemperatureTree = new AVLTree<Date, number, Datum>(cpuData, { * toEntryFn: ({ timestamp, temperature }) => [timestamp, temperature] * }); * * // Query a specific time range (e.g., from 00:05 to 00:15) * const rangeStart = new Date('2024-12-02T00:05:00'); * const rangeEnd = new Date('2024-12-02T00:15:00'); * const rangeResults = cpuTemperatureTree.rangeSearch([rangeStart, rangeEnd], node => ({ * minute: node ? node.key.getMinutes() : 0, * temperature: cpuTemperatureTree.get(node ? node.key : undefined) * })); * * console.log(rangeResults); // [ * // { minute: 5, temperature: 59.4 }, * // { minute: 6, temperature: 60.1 }, * // { minute: 7, temperature: 61.3 }, * // { minute: 8, temperature: 62 }, * // { minute: 9, temperature: 63.5 }, * // { minute: 10, temperature: 64 }, * // { minute: 11, temperature: 62.8 }, * // { minute: 12, temperature: 61.5 }, * // { minute: 13, temperature: 60.2 }, * // { minute: 14, temperature: 59.8 }, * // { minute: 15, temperature: 58.6 } * // ] */ class AVLTree extends bst_1.BST { /** * Creates an instance of AVLTree. * @remarks Time O(N log N) (from `addMany` with balanced add). Space O(N). * * @param [keysNodesEntriesOrRaws=[]] - An iterable of items to add. * @param [options] - Configuration options for the AVL tree. */ constructor(keysNodesEntriesOrRaws = [], options) { super([], options); // Note: super.addMany is called, which in BST defaults to balanced add. if (keysNodesEntriesOrRaws) super.addMany(keysNodesEntriesOrRaws); } /** * (Protected) Creates a new AVL tree node. * @remarks Time O(1), Space O(1) * * @param key - The key for the new node. * @param [value] - The value for the new node. * @returns The newly created AVLTreeNode. */ _createNode(key, value) { return new AVLTreeNode(key, this._isMapMode ? undefined : value); } /** * Checks if the given item is an `AVLTreeNode` instance. * @remarks Time O(1), Space O(1) * * @param keyNodeOrEntry - The item to check. * @returns True if it's an AVLTreeNode, false otherwise. */ isNode(keyNodeOrEntry) { return keyNodeOrEntry instanceof AVLTreeNode; } /** * Adds a new node to the AVL tree and balances the tree path. * @remarks Time O(log N) (O(H) for BST add + O(H) for `_balancePath`). Space O(H) for path/recursion. * * @param keyNodeOrEntry - The key, node, or entry to add. * @param [value] - The value, if providing just a key. * @returns True if the addition was successful, false otherwise. */ add(keyNodeOrEntry, value) { if (keyNodeOrEntry === null) return false; const inserted = super.add(keyNodeOrEntry, value); // If insertion was successful, balance the path from the new node up to the root. if (inserted) this._balancePath(keyNodeOrEntry); return inserted; } /** * Deletes a node from the AVL tree and re-balances the tree. * @remarks Time O(log N) (O(H) for BST delete + O(H) for `_balancePath`). Space O(H) for path/recursion. * * @param keyNodeOrEntry - The node to delete. * @returns An array containing deletion results. */ delete(keyNodeOrEntry) { const deletedResults = super.delete(keyNodeOrEntry); // After deletion, balance the path from the parent of the *physically deleted* node. for (const { needBalanced } of deletedResults) { if (needBalanced) { this._balancePath(needBalanced); } } return deletedResults; } /** * Rebuilds the tree to be perfectly balanced. * @remarks AVL trees are already height-balanced, but this makes them *perfectly* balanced (minimal height and all leaves at N or N-1). * Time O(N) (O(N) for DFS, O(N) for sorted build). Space O(N) for node array and recursion stack. * * @param [iterationType=this.iterationType] - The traversal method for the initial node export. * @returns True if successful, false if the tree was empty. */ perfectlyBalance(iterationType = this.iterationType) { const nodes = this.dfs(node => node, 'IN', false, this._root, iterationType); const n = nodes.length; if (n === 0) return false; this._clearNodes(); // Build balanced tree from sorted array const build = (l, r, parent) => { if (l > r) return undefined; const m = l + ((r - l) >> 1); const root = nodes[m]; root.left = build(l, m - 1, root); root.right = build(m + 1, r, root); root.parent = parent; // Update height during the build const lh = root.left ? root.left.height : -1; const rh = root.right ? root.right.height : -1; root.height = Math.max(lh, rh) + 1; return root; }; const newRoot = build(0, n - 1, undefined); this._setRoot(newRoot); this._size = n; return true; } /** * Creates a new AVLTree by mapping each [key, value] pair. * @remarks Time O(N log N) (O(N) iteration + O(log M) `add` for each item into the new tree). Space O(N) for the new tree. * * @template MK - New key type. * @template MV - New value type. * @template MR - New raw type. * @param callback - A function to map each [key, value] pair. * @param [options] - Options for the new AVLTree. * @param [thisArg] - `this` context for the callback. * @returns A new, mapped AVLTree. */ map(callback, options, thisArg) { const out = this._createLike([], options); let index = 0; // Iterates in-order for (const [key, value] of this) { // `add` on the new tree will be O(log N) and will self-balance. out.add(callback.call(thisArg, key, value, index++, this)); } return out; } /** * (Protected) Creates a new, empty instance of the same AVLTree constructor. * @remarks Time O(1) * * @template TK, TV, TR - Generic types for the new instance. * @param [options] - Options for the new tree. * @returns A new, empty tree. */ _createInstance(options) { const Ctor = this.constructor; return new Ctor([], Object.assign(Object.assign({}, this._snapshotOptions()), (options !== null && options !== void 0 ? options : {}))); } /** * (Protected) Creates a new instance of the same AVLTree constructor, potentially with different generic types. * @remarks Time O(N log N) (from constructor) due to processing the iterable. * * @template TK, TV, TR - Generic types for the new instance. * @param [iter=[]] - An iterable to populate the new tree. * @param [options] - Options for the new tree. * @returns A new AVLTree. */ _createLike(iter = [], options) { const Ctor = this.constructor; return new Ctor(iter, Object.assign(Object.assign({}, this._snapshotOptions()), (options !== null && options !== void 0 ? options : {}))); } /** * (Protected) Swaps properties of two nodes, including height. * @remarks Time O(H) (due to `ensureNode`), but O(1) if nodes are passed directly. * * @param srcNode - The source node. * @param destNode - The destination node. * @returns The `destNode` (now holding `srcNode`'s properties). */ _swapProperties(srcNode, destNode) { const srcNodeEnsured = this.ensureNode(srcNode); const destNodeEnsured = this.ensureNode(destNode); if (srcNodeEnsured && destNodeEnsured) { const { key, value, height } = destNodeEnsured; const tempNode = this._createNode(key, value); if (tempNode) { tempNode.height = height; // Copy src to dest destNodeEnsured.key = srcNodeEnsured.key; if (!this._isMapMode) destNodeEnsured.value = srcNodeEnsured.value; destNodeEnsured.height = srcNodeEnsured.height; // Copy temp (original dest) to src srcNodeEnsured.key = tempNode.key; if (!this._isMapMode) srcNodeEnsured.value = tempNode.value; srcNodeEnsured.height = tempNode.height; } return destNodeEnsured; } return undefined; } /** * (Protected) Calculates the balance factor (height(right) - height(left)). * @remarks Time O(1) (assumes heights are stored). * * @param node - The node to check. * @returns The balance factor (positive if right-heavy, negative if left-heavy). */ _balanceFactor(node) { const left = node.left ? node.left.height : -1; const right = node.right ? node.right.height : -1; return right - left; } /** * (Protected) Recalculates and updates the height of a node based on its children's heights. * @remarks Time O(1) (assumes children's heights are correct). * * @param node - The node to update. */ _updateHeight(node) { const leftHeight = node.left ? node.left.height : -1; const rightHeight = node.right ? node.right.height : -1; node.height = 1 + Math.max(leftHeight, rightHeight); } /** * (Protected) Performs a Left-Left (LL) rotation (a single right rotation). * @remarks Time O(1), Space O(1) * * @param A - The unbalanced node (root of the unbalanced subtree). */ _balanceLL(A) { const parentOfA = A.parent; const B = A.left; // The left child if (B !== null) A.parent = B; if (B && B.right) { B.right.parent = A; } if (B) B.parent = parentOfA; // Update parent's child pointer if (A === this.root) { if (B) this._setRoot(B); } else { if ((parentOfA === null || parentOfA === void 0 ? void 0 : parentOfA.left) === A) { parentOfA.left = B; } else { if (parentOfA) parentOfA.right = B; } } // Perform rotation if (B) { A.left = B.right; B.right = A; } this._updateHeight(A); if (B) this._updateHeight(B); } /** * (Protected) Performs a Left-Right (LR) double rotation. * @remarks Time O(1), Space O(1) * * @param A - The unbalanced node (root of the unbalanced subtree). */ _balanceLR(A) { const parentOfA = A.parent; const B = A.left; let C = undefined; if (B) { C = B.right; // The "middle" node } if (A && C !== null) A.parent = C; if (B && C !== null) B.parent = C; if (C) { if (C.left) { if (B !== null) C.left.parent = B; } if (C.right) { C.right.parent = A; } C.parent = parentOfA; } // Update parent's child pointer if (A === this.root) { if (C) this._setRoot(C); } else { if (parentOfA) { if (parentOfA.left === A) { parentOfA.left = C; } else { parentOfA.right = C; } } } // Perform rotation if (C) { A.left = C.right; if (B) B.right = C.left; C.left = B; C.right = A; } this._updateHeight(A); if (B) this._updateHeight(B); if (C) this._updateHeight(C); } /** * (Protected) Performs a Right-Right (RR) rotation (a single left rotation). * @remarks Time O(1), Space O(1) * * @param A - The unbalanced node (root of the unbalanced subtree). */ _balanceRR(A) { const parentOfA = A.parent; const B = A.right; // The right child if (B !== null) A.parent = B; if (B) { if (B.left) { B.left.parent = A; } B.parent = parentOfA; } // Update parent's child pointer if (A === this.root) { if (B) this._setRoot(B); } else { if (parentOfA) { if (parentOfA.left === A) { parentOfA.left = B; } else { parentOfA.right = B; } } } // Perform rotation if (B) { A.right = B.left; B.left = A; } this._updateHeight(A); if (B) this._updateHeight(B); } /** * (Protected) Performs a Right-Left (RL) double rotation. * @remarks Time O(1), Space O(1) * * @param A - The unbalanced node (root of the unbalanced subtree). */ _balanceRL(A) { const parentOfA = A.parent; const B = A.right; let C = undefined; if (B) { C = B.left; // The "middle" node } if (C !== null) A.parent = C; if (B && C !== null) B.parent = C; if (C) { if (C.left) { C.left.parent = A; } if (C.right) { if (B !== null) C.right.parent = B; } C.parent = parentOfA; } // Update parent's child pointer if (A === this.root) { if (C) this._setRoot(C); } else { if (parentOfA) { if (parentOfA.left === A) { parentOfA.left = C; } else { parentOfA.right = C; } } } // Perform rotation if (C) A.right = C.left; if (B && C) B.left = C.right; if (C) C.left = A; if (C) C.right = B; this._updateHeight(A); if (B) this._updateHeight(B); if (C) this._updateHeight(C); } /** * (Protected) Traverses up the tree from the specified node, updating heights and performing rotations as needed. * @remarks Time O(log N) (O(H)), as it traverses the path to root. Space O(H) for the path array. * * @param node - The node to start balancing from (e.g., the newly inserted node or parent of the deleted node). */ _balancePath(node) { // Get the path from the node to the root. node = this.ensureNode(node); const path = this.getPathToRoot(node, node => node, false); // Iterate up the path (from node to root) for (let i = 0; i < path.length; i++) { const A = path[i]; if (A) { this._updateHeight(A); // Check the balance factor switch (this._balanceFactor(A)) { case -2: // Left-heavy if (A && A.left) { if (this._balanceFactor(A.left) <= 0) { // Left-Left case this._balanceLL(A); } else { // Left-Right case this._balanceLR(A); } } break; case +2: // Right-heavy if (A && A.right) { if (this._balanceFactor(A.right) >= 0) { // Right-Right case this._balanceRR(A); } else { // Right-Left case this._balanceRL(A); } } } } } } /** * (Protected) Replaces a node, ensuring height is copied. * @remarks Time O(1) * * @param oldNode - The node to be replaced. * @param newNode - The node to insert. * @returns The `newNode`. */ _replaceNode(oldNode, newNode) { // When replacing a node (e.g., on duplicate key), preserve the height. newNode.height = oldNode.height; return super._replaceNode(oldNode, newNode); } } exports.AVLTree = AVLTree;