UNPKG

tree-multimap-typed

Version:
755 lines (754 loc) 40.9 kB
/** * data-structure-typed * * @author Pablo Zeng * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com> * @license MIT License */ import type { BinaryTreeDeleteResult, BinaryTreeOptions, BinaryTreePrintOptions, BTNEntry, DFSOrderPattern, EntryCallback, FamilyPosition, IterationType, NodeCallback, NodeDisplayLayout, NodePredicate, RBTNColor, ToEntryFn } from '../../types'; import { IBinaryTree } from '../../interfaces'; import { IterableEntryBase } from '../base'; import { Range } from '../../common'; /** * @template K - The type of the key. * @template V - The type of the value. */ export declare class BinaryTreeNode<K = any, V = any> { key: K; value?: V; parent?: BinaryTreeNode<K, V>; /** * Creates an instance of BinaryTreeNode. * @remarks Time O(1), Space O(1) * * @param key - The key of the node. * @param [value] - The value associated with the key. */ constructor(key: K, value?: V); _left?: BinaryTreeNode<K, V> | null | undefined; /** * Gets the left child of the node. * @remarks Time O(1), Space O(1) * * @returns The left child. */ get left(): BinaryTreeNode<K, V> | null | undefined; /** * Sets the left child of the node and updates its parent reference. * @remarks Time O(1), Space O(1) * * @param v - The node to set as the left child. */ set left(v: BinaryTreeNode<K, V> | null | undefined); _right?: BinaryTreeNode<K, V> | null | undefined; /** * Gets the right child of the node. * @remarks Time O(1), Space O(1) * * @returns The right child. */ get right(): BinaryTreeNode<K, V> | null | undefined; /** * Sets the right child of the node and updates its parent reference. * @remarks Time O(1), Space O(1) * * @param v - The node to set as the right child. */ set right(v: BinaryTreeNode<K, V> | null | undefined); _height: number; /** * Gets the height of the node (used in self-balancing trees). * @remarks Time O(1), Space O(1) * * @returns The height. */ get height(): number; /** * Sets the height of the node. * @remarks Time O(1), Space O(1) * * @param value - The new height. */ set height(value: number); _color: RBTNColor; /** * Gets the color of the node (used in Red-Black trees). * @remarks Time O(1), Space O(1) * * @returns The node's color. */ get color(): RBTNColor; /** * Sets the color of the node. * @remarks Time O(1), Space O(1) * * @param value - The new color. */ set color(value: RBTNColor); _count: number; /** * Gets the count of nodes in the subtree rooted at this node (used in order-statistic trees). * @remarks Time O(1), Space O(1) * * @returns The subtree node count. */ get count(): number; /** * Sets the count of nodes in the subtree. * @remarks Time O(1), Space O(1) * * @param value - The new count. */ set count(value: number); /** * Gets the position of the node relative to its parent. * @remarks Time O(1), Space O(1) * * @returns The family position (e.g., 'ROOT', 'LEFT', 'RIGHT'). */ get familyPosition(): FamilyPosition; } /** * A general Binary Tree implementation. * * @remarks * This class implements a basic Binary Tree, not a Binary Search Tree. * The `add` operation inserts nodes level-by-level (BFS) into the first available slot. * * @template K - The type of the key. * @template V - The type of the value. * @template R - The type of the raw data object (if using `toEntryFn`). * 1. Two Children Maximum: Each node has at most two children. * 2. Left and Right Children: Nodes have distinct left and right children. * 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree. * 4. Subtrees: Each child of a node forms the root of a subtree. * 5. Leaf Nodes: Nodes without children are leaves. * @example * // determine loan approval using a decision tree * // Decision tree structure * const loanDecisionTree = new BinaryTree<string>( * ['stableIncome', 'goodCredit', 'Rejected', 'Approved', 'Rejected'], * { isDuplicate: true } * ); * * function determineLoanApproval( * node?: BinaryTreeNode<string> | null, * conditions?: { [key: string]: boolean } * ): string { * if (!node) throw new Error('Invalid node'); * * // If it's a leaf node, return the decision result * if (!node.left && !node.right) return node.key; * * // Check if a valid condition exists for the current node's key * return conditions?.[node.key] * ? determineLoanApproval(node.left, conditions) * : determineLoanApproval(node.right, conditions); * } * * // Test case 1: Stable income and good credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: true })); // 'Approved' * * // Test case 2: Stable income but poor credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: true, goodCredit: false })); // 'Rejected' * * // Test case 3: No stable income * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: true })); // 'Rejected' * * // Test case 4: No stable income and poor credit score * console.log(determineLoanApproval(loanDecisionTree.root, { stableIncome: false, goodCredit: false })); // 'Rejected' * @example * // evaluate the arithmetic expression represented by the binary tree * const expressionTree = new BinaryTree<number | string>(['+', 3, '*', null, null, 5, '-', null, null, 2, 8]); * * function evaluate(node?: BinaryTreeNode<number | string> | null): number { * if (!node) return 0; * * if (typeof node.key === 'number') return node.key; * * const leftValue = evaluate(node.left); // Evaluate the left subtree * const rightValue = evaluate(node.right); // Evaluate the right subtree * * // Perform the operation based on the current node's operator * switch (node.key) { * case '+': * return leftValue + rightValue; * case '-': * return leftValue - rightValue; * case '*': * return leftValue * rightValue; * case '/': * return rightValue !== 0 ? leftValue / rightValue : 0; // Handle division by zero * default: * throw new Error(`Unsupported operator: ${node.key}`); * } * } * * console.log(evaluate(expressionTree.root)); // -27 */ export declare class BinaryTree<K = any, V = any, R extends object = object> extends IterableEntryBase<K, V | undefined> implements IBinaryTree<K, V, R> { iterationType: IterationType; /** * Creates an instance of BinaryTree. * @remarks Time O(N * M), where N is the number of items in `keysNodesEntriesOrRaws` and M is the tree size at insertion time (due to O(M) `add` operation). Space O(N) for storing the nodes. * * @param [keysNodesEntriesOrRaws=[]] - An iterable of items to add. * @param [options] - Configuration options for the tree. */ constructor(keysNodesEntriesOrRaws?: Iterable<K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, options?: BinaryTreeOptions<K, V, R>); protected _isMapMode: boolean; /** * Gets whether the tree is in Map mode. * @remarks In Map mode (default), values are stored in an external Map, and nodes only hold keys. If false, values are stored directly on the nodes. Time O(1) * * @returns True if in Map mode, false otherwise. */ get isMapMode(): boolean; protected _isDuplicate: boolean; /** * Gets whether the tree allows duplicate keys. * @remarks Time O(1) * * @returns True if duplicates are allowed, false otherwise. */ get isDuplicate(): boolean; protected _store: Map<K, V | undefined>; /** * Gets the external value store (used in Map mode). * @remarks Time O(1) * * @returns The map storing key-value pairs. */ get store(): Map<K, V | undefined>; protected _root?: BinaryTreeNode<K, V> | null | undefined; /** * Gets the root node of the tree. * @remarks Time O(1) * * @returns The root node. */ get root(): BinaryTreeNode<K, V> | null | undefined; protected _size: number; /** * Gets the number of nodes in the tree. * @remarks Time O(1) * * @returns The size of the tree. */ get size(): number; protected _NIL: BinaryTreeNode<K, V>; /** * Gets the sentinel NIL node (used in self-balancing trees like Red-Black Tree). * @remarks Time O(1) * * @returns The NIL node. */ get NIL(): BinaryTreeNode<K, V>; protected _toEntryFn?: ToEntryFn<K, V, R>; /** * Gets the function used to convert raw data objects (R) into [key, value] entries. * @remarks Time O(1) * * @returns The conversion function. */ get toEntryFn(): ToEntryFn<K, V, R> | undefined; /** * (Protected) Creates a new node. * @remarks Time O(1), Space O(1) * * @param key - The key for the new node. * @param [value] - The value for the new node (used if not in Map mode). * @returns The newly created node. */ _createNode(key: K, value?: V): BinaryTreeNode<K, V>; /** * Creates a new, empty tree of the same type and configuration. * @remarks Time O(1) (excluding options cloning), Space O(1) * * @param [options] - Optional overrides for the new tree's options. * @returns A new, empty tree instance. */ createTree(options?: Partial<BinaryTreeOptions<K, V, R>>): this; /** * Ensures the input is a node. If it's a key or entry, it searches for the node. * @remarks Time O(1) if a node is passed. O(N) if a key or entry is passed (due to `getNode` performing a full search). Space O(1) if iterative search, O(H) if recursive (where H is height, O(N) worst-case). * * @param keyNodeOrEntry - The item to resolve to a node. * @param [iterationType=this.iterationType] - The traversal method to use if searching. * @returns The resolved node, or null/undefined if not found or input is null/undefined. */ ensureNode(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): BinaryTreeNode<K, V> | null | undefined; /** * Checks if the given item is a `BinaryTreeNode` instance. * @remarks Time O(1), Space O(1) * * @param keyNodeOrEntry - The item to check. * @returns True if it's a node, false otherwise. */ isNode(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is BinaryTreeNode<K, V>; /** * Checks if the given item is a raw data object (R) that needs conversion via `toEntryFn`. * @remarks Time O(1), Space O(1) * * @param keyNodeEntryOrRaw - The item to check. * @returns True if it's a raw object, false otherwise. */ isRaw(keyNodeEntryOrRaw: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R): keyNodeEntryOrRaw is R; /** * Checks if the given item is a "real" node (i.e., not null, undefined, or NIL). * @remarks Time O(1), Space O(1) * * @param keyNodeOrEntry - The item to check. * @returns True if it's a real node, false otherwise. */ isRealNode(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is BinaryTreeNode<K, V>; /** * Checks if the given item is either a "real" node or null. * @remarks Time O(1), Space O(1) * * @param keyNodeOrEntry - The item to check. * @returns True if it's a real node or null, false otherwise. */ isRealNodeOrNull(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is BinaryTreeNode<K, V> | null; /** * Checks if the given item is the sentinel NIL node. * @remarks Time O(1), Space O(1) * * @param keyNodeOrEntry - The item to check. * @returns True if it's the NIL node, false otherwise. */ isNIL(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): boolean; /** * Checks if the given item is a `Range` object. * @remarks Time O(1), Space O(1) * * @param keyNodeEntryOrPredicate - The item to check. * @returns True if it's a Range, false otherwise. */ isRange(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>> | Range<K>): keyNodeEntryOrPredicate is Range<K>; /** * Checks if a node is a leaf (has no real children). * @remarks Time O(N) if a key/entry is passed (due to `ensureNode`). O(1) if a node is passed. Space O(1) or O(H) (from `ensureNode`). * * @param keyNodeOrEntry - The node to check. * @returns True if the node is a leaf, false otherwise. */ isLeaf(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): boolean; /** * Checks if the given item is a [key, value] entry pair. * @remarks Time O(1), Space O(1) * * @param keyNodeOrEntry - The item to check. * @returns True if it's an entry, false otherwise. */ isEntry(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is BTNEntry<K, V>; /** * Checks if the given key is valid (comparable or null). * @remarks Time O(1), Space O(1) * * @param key - The key to validate. * @returns True if the key is valid, false otherwise. */ isValidKey(key: any): key is K; /** * Adds a new node to the tree. * @remarks Time O(log N), For BST, Red-Black Tree, and AVL Tree subclasses, the worst-case time is O(log N). This implementation adds the node at the first available position in a level-order (BFS) traversal. This is NOT a Binary Search Tree insertion. Time O(N), where N is the number of nodes. It must traverse level-by-level to find an empty slot. Space O(N) in the worst case for the BFS queue (e.g., a full last level). * * @param keyNodeOrEntry - The key, node, or entry to add. * @param [value] - The value, if providing just a key. * @returns True if the addition was successful, false otherwise. */ add(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V): boolean; /** * Adds multiple items to the tree. * @remarks Time O(N * M), where N is the number of items to add and M is the size of the tree at insertion (due to O(M) `add` operation). Space O(M) (from `add`) + O(N) (for the `inserted` array). * * @param keysNodesEntriesOrRaws - An iterable of items to add. * @param [values] - An optional parallel iterable of values. * @returns An array of booleans indicating the success of each individual `add` operation. */ addMany(keysNodesEntriesOrRaws: Iterable<K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, values?: Iterable<V | undefined>): boolean[]; /** * Merges another tree into this one by adding all its nodes. * @remarks Time O(N * M), same as `addMany`, where N is the size of `anotherTree` and M is the size of this tree. Space O(M) (from `add`). * * @param anotherTree - The tree to merge. */ merge(anotherTree: BinaryTree<K, V, R>): void; /** * Clears the tree and refills it with new items. * @remarks Time O(N) (for `clear`) + O(N * M) (for `addMany`) = O(N * M). Space O(M) (from `addMany`). * * @param keysNodesEntriesOrRaws - An iterable of items to add. * @param [values] - An optional parallel iterable of values. */ refill(keysNodesEntriesOrRaws: Iterable<K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, values?: Iterable<V | undefined>): void; /** * Deletes a node from the tree. * @remarks Time O(log N), For BST, Red-Black Tree, and AVL Tree subclasses, the worst-case time is O(log N). This implementation finds the node, and if it has two children, swaps it with the rightmost node of its left subtree (in-order predecessor) before deleting. Time O(N) in the worst case. O(N) to find the node (`getNode`) and O(H) (which is O(N) worst-case) to find the rightmost node. Space O(1) (if `getNode` is iterative, which it is). * * @param keyNodeOrEntry - The node to delete. * @returns An array containing deletion results (for compatibility with self-balancing trees). */ delete(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): BinaryTreeDeleteResult<BinaryTreeNode<K, V>>[]; /** * Searches the tree for nodes matching a predicate. * @remarks Time O(log N), For BST, Red-Black Tree, and AVL Tree subclasses, the worst-case time is O(log N). Performs a full DFS (pre-order) scan of the tree. Time O(N), as it may visit every node. Space O(H) for the call stack (recursive) or explicit stack (iterative), where H is the tree height (O(N) worst-case). * * @template C - The type of the callback function. * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for. * @param [onlyOne=false] - If true, stops after finding the first match. * @param [callback=this._DEFAULT_NODE_CALLBACK] - A function to call on matching nodes. * @param [startNode=this._root] - The node to start the search from. * @param [iterationType=this.iterationType] - Whether to use 'RECURSIVE' or 'ITERATIVE' search. * @returns An array of results from the callback function for each matching node. */ search<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V> | null>, onlyOne?: boolean, callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>[]; /** * Gets all nodes matching a predicate. * @remarks Time O(N) (via `search`). Space O(H) or O(N) (via `search`). * * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for. * @param [onlyOne=false] - If true, stops after finding the first match. * @param [startNode=this._root] - The node to start the search from. * @param [iterationType=this.iterationType] - The traversal method. * @returns An array of matching nodes. */ getNodes(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>, onlyOne?: boolean, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): BinaryTreeNode<K, V>[]; /** * Gets the first node matching a predicate. * @remarks Time O(log N), For BST, Red-Black Tree, and AVL Tree subclasses, the worst-case time is O(log N). Time O(N) in the worst case (via `search`). Space O(H) or O(N) (via `search`). * * @param keyNodeEntryOrPredicate - The key, node, entry, or predicate function to search for. * @param [startNode=this._root] - The node to start the search from. * @param [iterationType=this.iterationType] - The traversal method. * @returns The first matching node, or undefined if not found. */ getNode(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V> | null>, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): BinaryTreeNode<K, V> | null | undefined; /** * Gets the value associated with a key. * @remarks Time O(log N), For BST, Red-Black Tree, and AVL Tree subclasses, the worst-case time is O(log N). Time O(1) if in Map mode. O(N) if not in Map mode (uses `getNode`). Space O(1) if in Map mode. O(H) or O(N) otherwise. * * @param keyNodeEntryOrPredicate - The key, node, or entry to get the value for. * @param [startNode=this._root] - The node to start searching from (if not in Map mode). * @param [iterationType=this.iterationType] - The traversal method (if not in Map mode). * @returns The associated value, or undefined. */ get(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): V | undefined; /** * Checks if a node matching the predicate exists in the tree. * @remarks Time O(log N), For BST, Red-Black Tree, and AVL Tree subclasses, the worst-case time is O(log N). Time O(N) in the worst case (via `search`). Space O(H) or O(N) (via `search`). * * @param [keyNodeEntryOrPredicate] - The key, node, entry, or predicate to check for. * @param [startNode] - The node to start the search from. * @param [iterationType] - The traversal method. * @returns True if a matching node exists, false otherwise. */ has(keyNodeEntryOrPredicate?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): boolean; /** * Clears the tree of all nodes and values. * @remarks Time O(N) if in Map mode (due to `_store.clear()`), O(1) otherwise. Space O(1) */ clear(): void; /** * Checks if the tree is empty. * @remarks Time O(1), Space O(1) * * @returns True if the tree has no nodes, false otherwise. */ isEmpty(): boolean; /** * Checks if the tree is perfectly balanced. * @remarks A tree is perfectly balanced if the difference between min and max height is at most 1. Time O(N), as it requires two full traversals (`getMinHeight` and `getHeight`). Space O(H) or O(N) (from height calculation). * * @param [startNode=this._root] - The node to start checking from. * @returns True if perfectly balanced, false otherwise. */ isPerfectlyBalanced(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): boolean; /** * Checks if the tree is a valid Binary Search Tree (BST). * @remarks Time O(N), as it must visit every node. Space O(H) for the call stack (recursive) or explicit stack (iterative), where H is the tree height (O(N) worst-case). * * @param [startNode=this._root] - The node to start checking from. * @param [iterationType=this.iterationType] - The traversal method. * @returns True if it's a valid BST, false otherwise. */ isBST(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): boolean; /** * Gets the depth of a node (distance from `startNode`). * @remarks Time O(H), where H is the depth of the `dist` node relative to `startNode`. O(N) worst-case. Space O(1). * * @param dist - The node to find the depth of. * @param [startNode=this._root] - The node to measure depth from (defaults to root). * @returns The depth (0 if `dist` is `startNode`). */ getDepth(dist: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): number; /** * Gets the maximum height of the tree (longest path from startNode to a leaf). * @remarks Time O(N), as it must visit every node. Space O(H) for recursive stack (O(N) worst-case) or O(N) for iterative stack (storing node + depth). * * @param [startNode=this._root] - The node to start measuring from. * @param [iterationType=this.iterationType] - The traversal method. * @returns The height ( -1 for an empty tree, 0 for a single-node tree). */ getHeight(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): number; /** * Gets the minimum height of the tree (shortest path from startNode to a leaf). * @remarks Time O(N), as it must visit every node. Space O(H) for recursive stack (O(N) worst-case) or O(N) for iterative (due to `depths` Map). * * @param [startNode=this._root] - The node to start measuring from. * @param [iterationType=this.iterationType] - The traversal method. * @returns The minimum height (-1 for empty, 0 for single node). */ getMinHeight(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): number; /** * Gets the path from a given node up to the root. * @remarks Time O(H), where H is the depth of the `beginNode`. O(N) worst-case. Space O(H) for the result array. * * @template C - The type of the callback function. * @param beginNode - The node to start the path from. * @param [callback=this._DEFAULT_NODE_CALLBACK] - A function to call on each node in the path. * @param [isReverse=false] - If true, returns the path from root-to-node. * @returns An array of callback results. */ getPathToRoot<C extends NodeCallback<BinaryTreeNode<K, V> | undefined>>(beginNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, callback?: C, isReverse?: boolean): ReturnType<C>[]; /** * Finds the leftmost node in a subtree (the node with the smallest key in a BST). * @remarks Time O(H), where H is the height of the left spine. O(N) worst-case. Space O(H) for recursive/trampoline stack. * * @template C - The type of the callback function. * @param [callback=this._DEFAULT_NODE_CALLBACK] - A function to call on the leftmost node. * @param [startNode=this._root] - The subtree root to search from. * @param [iterationType=this.iterationType] - The traversal method. * @returns The callback result for the leftmost node. */ getLeftMost<C extends NodeCallback<BinaryTreeNode<K, V> | undefined>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>; /** * Finds the rightmost node in a subtree (the node with the largest key in a BST). * @remarks Time O(H), where H is the height of the right spine. O(N) worst-case. Space O(H) for recursive/trampoline stack. * * @template C - The type of the callback function. * @param [callback=this._DEFAULT_NODE_CALLBACK] - A function to call on the rightmost node. * @param [startNode=this._root] - The subtree root to search from. * @param [iterationType=this.iterationType] - The traversal method. * @returns The callback result for the rightmost node. */ getRightMost<C extends NodeCallback<BinaryTreeNode<K, V> | undefined>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>; /** * Gets the Morris traversal predecessor (rightmost node in the left subtree, or node itself). * @remarks This is primarily a helper for Morris traversal. Time O(H), where H is the height of the left subtree. O(N) worst-case. Space O(1). * * @param node - The node to find the predecessor for. * @returns The Morris predecessor. */ getPredecessor(node: BinaryTreeNode<K, V>): BinaryTreeNode<K, V>; /** * Gets the in-order successor of a node in a BST. * @remarks Time O(H), where H is the tree height. O(N) worst-case. Space O(H) (due to `getLeftMost` stack). * * @param [x] - The node to find the successor of. * @returns The successor node, or null/undefined if none exists. */ getSuccessor(x?: K | BinaryTreeNode<K, V> | null): BinaryTreeNode<K, V> | null | undefined; dfs<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback?: C, pattern?: DFSOrderPattern, onlyOne?: boolean, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>[]; dfs<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(callback?: C, pattern?: DFSOrderPattern, onlyOne?: boolean, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: boolean): ReturnType<C>[]; bfs<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: false): ReturnType<C>[]; bfs<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: true): ReturnType<C>[]; /** * Finds all leaf nodes in the tree. * @remarks Time O(N), visits every node. Space O(H) for recursive stack or O(N) for iterative queue. * * @template C - The type of the callback function. * @param [callback=this._DEFAULT_NODE_CALLBACK] - Function to call on each leaf node. * @param [startNode=this._root] - The node to start from. * @param [iterationType=this.iterationType] - The traversal method. * @returns An array of callback results. */ leaves<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType): ReturnType<C>[]; listLevels<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: false): ReturnType<C>[][]; listLevels<C extends NodeCallback<BinaryTreeNode<K, V> | null>>(callback?: C, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: true): ReturnType<C>[][]; morris<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback?: C, pattern?: DFSOrderPattern, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): ReturnType<C>[]; /** * Clones the tree. * @remarks Time O(N * M), where N is the number of nodes and M is the tree size during insertion (due to `bfs` + `add`, and `add` is O(M)). Space O(N) for the new tree and the BFS queue. * * @returns A new, cloned instance of the tree. */ clone(): this; /** * Creates a new tree containing only the entries that satisfy the predicate. * @remarks Time O(N * M), where N is nodes in this tree, and M is size of the new tree during insertion (O(N) iteration + O(M) `add` for each item). Space O(N) for the new tree. * * @param predicate - A function to test each [key, value] pair. * @param [thisArg] - `this` context for the predicate. * @returns A new, filtered tree. */ filter(predicate: EntryCallback<K, V | undefined, boolean>, thisArg?: unknown): this; /** * Creates a new tree by mapping each [key, value] pair to a new entry. * @remarks Time O(N * M), where N is nodes in this tree, and M is size of the new tree during insertion. Space O(N) for the new tree. * * @template MK - New key type. * @template MV - New value type. * @template MR - New raw type. * @param cb - A function to map each [key, value] pair. * @param [options] - Options for the new tree. * @param [thisArg] - `this` context for the callback. * @returns A new, mapped tree. */ map<MK = K, MV = V, MR extends object = object>(cb: EntryCallback<K, V | undefined, [MK, MV]>, options?: Partial<BinaryTreeOptions<MK, MV, MR>>, thisArg?: unknown): BinaryTree<MK, MV, MR>; /** * Generates a string representation of the tree for visualization. * @remarks Time O(N), visits every node. Space O(N*H) or O(N^2) in the worst case, as the string width can grow significantly. * * @param [startNode=this._root] - The node to start printing from. * @param [options] - Options to control the output (e.g., show nulls). * @returns The string representation of the tree. */ toVisual(startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, options?: BinaryTreePrintOptions): string; /** * Prints a visual representation of the tree to the console. * @remarks Time O(N) (via `toVisual`). Space O(N*H) or O(N^2) (via `toVisual`). * * @param [options] - Options to control the output. * @param [startNode=this._root] - The node to start printing from. */ print(options?: BinaryTreePrintOptions, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): void; protected _dfs<C extends NodeCallback<BinaryTreeNode<K, V>>>(callback: C, pattern?: DFSOrderPattern, onlyOne?: boolean, startNode?: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, iterationType?: IterationType, includeNull?: boolean, shouldVisitLeft?: (node: BinaryTreeNode<K, V> | null | undefined) => boolean, shouldVisitRight?: (node: BinaryTreeNode<K, V> | null | undefined) => boolean, shouldVisitRoot?: (node: BinaryTreeNode<K, V> | null | undefined) => boolean, shouldProcessRoot?: (node: BinaryTreeNode<K, V> | null | undefined) => boolean): ReturnType<C>[]; /** * (Protected) Gets the iterator for the tree (default in-order). * @remarks Time O(N) for full iteration. O(H) to get the first element. Space O(H) for the iterative stack. O(H) for recursive stack. * * @param [node=this._root] - The node to start iteration from. * @returns An iterator for [key, value] pairs. */ protected _getIterator(node?: BinaryTreeNode<K, V> | null | undefined): IterableIterator<[K, V | undefined]>; /** * (Protected) Default callback function, returns the node's key. * @remarks Time O(1) * * @param node - The node. * @returns The node's key or undefined. */ protected _DEFAULT_NODE_CALLBACK: (node: BinaryTreeNode<K, V> | null | undefined) => K | undefined; /** * (Protected) Snapshots the current tree's configuration options. * @remarks Time O(1) * * @template TK, TV, TR - Generic types for the options. * @returns The options object. */ protected _snapshotOptions<TK = K, TV = V, TR extends object = R>(): BinaryTreeOptions<TK, TV, TR>; /** * (Protected) Creates a new, empty instance of the same tree constructor. * @remarks Time O(1) * * @template TK, TV, TR - Generic types for the new instance. * @param [options] - Options for the new tree. * @returns A new, empty tree. */ protected _createInstance<TK = K, TV = V, TR extends object = R>(options?: Partial<BinaryTreeOptions<TK, TV, TR>>): this; /** * (Protected) Creates a new instance of the same tree constructor, potentially with different generic types. * @remarks Time O(N) (or as per constructor) due to processing the iterable. * * @template TK, TV, TR - Generic types for the new instance. * @param [iter=[]] - An iterable to populate the new tree. * @param [options] - Options for the new tree. * @returns A new tree. */ protected _createLike<TK = K, TV = V, TR extends object = R>(iter?: Iterable<TK | BinaryTreeNode<TK, TV> | [TK | null | undefined, TV | undefined] | null | undefined | TR>, options?: Partial<BinaryTreeOptions<TK, TV, TR>>): BinaryTree<TK, TV, TR>; /** * (Protected) Converts a key, node, or entry into a standardized [node, value] tuple. * @remarks Time O(1) * * @param keyNodeOrEntry - The input item. * @param [value] - An optional value (used if input is just a key). * @returns A tuple of [node, value]. */ protected _keyValueNodeOrEntryToNodeAndValue(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V): [BinaryTreeNode<K, V> | null | undefined, V | undefined]; /** * (Protected) Helper for cloning. Performs a BFS and adds all nodes to the new tree. * @remarks Time O(N * M) (O(N) BFS + O(M) `add` for each node). * * @param cloned - The new, empty tree instance to populate. */ protected _clone(cloned: BinaryTree<K, V, R>): void; /** * (Protected) Recursive helper for `toVisual`. * @remarks Time O(N), Space O(N*H) or O(N^2) * * @param node - The current node. * @param options - Print options. * @returns Layout information for this subtree. */ protected _displayAux(node: BinaryTreeNode<K, V> | null | undefined, options: BinaryTreePrintOptions): NodeDisplayLayout; /** * (Protected) Swaps the key/value properties of two nodes. * @remarks Time O(1) * * @param srcNode - The source node. * @param destNode - The destination node. * @returns The `destNode` (now holding `srcNode`'s properties). */ protected _swapProperties(srcNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, destNode: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): BinaryTreeNode<K, V> | undefined; /** * (Protected) Replaces a node in the tree with a new node, maintaining children and parent links. * @remarks Time O(1) * * @param oldNode - The node to be replaced. * @param newNode - The node to insert. * @returns The `newNode`. */ protected _replaceNode(oldNode: BinaryTreeNode<K, V>, newNode: BinaryTreeNode<K, V>): BinaryTreeNode<K, V>; /** * (Protected) Sets the root node and clears its parent reference. * @remarks Time O(1) * * @param v - The node to set as root. */ protected _setRoot(v: BinaryTreeNode<K, V> | null | undefined): void; /** * (Protected) Converts a key, node, entry, or predicate into a standardized predicate function. * @remarks Time O(1) * * @param keyNodeEntryOrPredicate - The item to convert. * @returns A predicate function. */ protected _ensurePredicate(keyNodeEntryOrPredicate: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | NodePredicate<BinaryTreeNode<K, V>>): NodePredicate<BinaryTreeNode<K, V>>; /** * (Protected) Checks if an item is a predicate function. * @remarks Time O(1) * * @param p - The item to check. * @returns True if it's a function. */ protected _isPredicate(p: any): p is NodePredicate<BinaryTreeNode<K, V>>; /** * (Protected) Extracts the key from a key, node, or entry. * @remarks Time O(1) * * @param keyNodeOrEntry - The item. * @returns The extracted key. */ protected _extractKey(keyNodeOrEntry: K | BinaryTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): K | null | undefined; /** * (Protected) Sets a value in the external store (Map mode). * @remarks Time O(1) (average for Map.set). * * @param key - The key. * @param value - The value. * @returns True if successful. */ protected _setValue(key: K | null | undefined, value: V | undefined): false | Map<K, V | undefined>; /** * (Protected) Clears all nodes from the tree. * @remarks Time O(1) */ protected _clearNodes(): void; /** * (Protected) Clears all values from the external store. * @remarks Time O(N) */ protected _clearValues(): void; }