UNPKG

transformers-fork

Version:

State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!

1,207 lines • 155 kB
declare const PreTrainedModel_base: new () => { (...args: any[]): any; _call(...args: any[]): any; }; /** * A base class for pre-trained models that provides the model configuration and an ONNX session. */ export class PreTrainedModel extends PreTrainedModel_base { /** * Instantiate one of the model classes of the library from a pretrained model. * * The model class to instantiate is selected based on the `model_type` property of the config object * (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible) * * @param {string} pretrained_model_name_or_path The name or path of the pretrained model. Can be either: * - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. * Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a * user or organization name, like `dbmdz/bert-base-german-cased`. * - A path to a *directory* containing model weights, e.g., `./my_model_directory/`. * @param {import('./utils/hub.js').PretrainedModelOptions} options Additional options for loading the model. * * @returns {Promise<PreTrainedModel>} A new instance of the `PreTrainedModel` class. */ static from_pretrained(pretrained_model_name_or_path: string, { progress_callback, config, cache_dir, local_files_only, revision, model_file_name, subfolder, device, dtype, use_external_data_format, session_options, }?: import("./utils/hub.js").PretrainedModelOptions): Promise<PreTrainedModel>; /** * Creates a new instance of the `PreTrainedModel` class. * @param {import('./configs.js').PretrainedConfig} config The model configuration. * @param {Record<string, any>} sessions The inference sessions for the model. * @param {Record<string, Object>} configs Additional configuration files (e.g., generation_config.json). */ constructor(config: import("./configs.js").PretrainedConfig, sessions: Record<string, any>, configs: Record<string, any>); main_input_name: string; forward_params: string[]; config: import("./configs.js").PretrainedConfig; sessions: Record<string, any>; configs: Record<string, any>; can_generate: boolean; _forward: typeof decoderForward; _prepare_inputs_for_generation: typeof image_text_to_text_prepare_inputs_for_generation; /** @type {import('./configs.js').TransformersJSConfig} */ custom_config: import("./configs.js").TransformersJSConfig; /** * Disposes of all the ONNX sessions that were created during inference. * @returns {Promise<unknown[]>} An array of promises, one for each ONNX session that is being disposed. * @todo Use https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/FinalizationRegistry */ dispose(): Promise<unknown[]>; /** * Runs the model with the provided inputs * @param {Object} model_inputs Object containing input tensors * @returns {Promise<Object>} Object containing output tensors */ _call(model_inputs: any): Promise<any>; /** * Forward method for a pretrained model. If not overridden by a subclass, the correct forward method * will be chosen based on the model type. * @param {Object} model_inputs The input data to the model in the format specified in the ONNX model. * @returns {Promise<Object>} The output data from the model in the format specified in the ONNX model. * @throws {Error} This method must be implemented in subclasses. */ forward(model_inputs: any): Promise<any>; /** * Get the model's generation config, if it exists. * @returns {GenerationConfig|null} The model's generation config if it exists, otherwise `null`. */ get generation_config(): GenerationConfig | null; /** * This function returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] * instances used for multinomial sampling. * @param {GenerationConfig} generation_config The generation config. * @returns {LogitsProcessorList} generation_config */ _get_logits_warper(generation_config: GenerationConfig): LogitsProcessorList; /** * @param {GenerationConfig} generation_config * @param {number} input_ids_seq_length The starting sequence length for the input ids. * @returns {LogitsProcessorList} * @private */ private _get_logits_processor; /** * This function merges multiple generation configs together to form a final generation config to be used by the model for text generation. * It first creates an empty `GenerationConfig` object, then it applies the model's own `generation_config` property to it. Finally, if a `generation_config` object was passed in the arguments, it overwrites the corresponding properties in the final config with those of the passed config object. * @param {GenerationConfig|null} generation_config A `GenerationConfig` object containing generation parameters. * @param {Object} kwargs Additional generation parameters to be used in place of those in the `generation_config` object. * @returns {GenerationConfig} The final generation config object to be used by the model for text generation. */ _prepare_generation_config(generation_config: GenerationConfig | null, kwargs: any, cls?: typeof GenerationConfig): GenerationConfig; /** * * @param {GenerationConfig} generation_config * @param {StoppingCriteriaList} [stopping_criteria=null] */ _get_stopping_criteria(generation_config: GenerationConfig, stopping_criteria?: StoppingCriteriaList): StoppingCriteriaList; /** * Confirms that the model class is compatible with generation. * If not, raises an exception that points to the right class to use. */ _validate_model_class(): void; prepare_inputs_for_generation(...args: any[]): any; /** * * @param {Object} inputs * @param {bigint[][]} inputs.generated_input_ids * @param {Object} inputs.outputs * @param {Object} inputs.model_inputs * @param {boolean} inputs.is_encoder_decoder * @returns {Object} The updated model inputs for the next generation iteration. */ _update_model_kwargs_for_generation({ generated_input_ids, outputs, model_inputs, is_encoder_decoder }: { generated_input_ids: bigint[][]; outputs: any; model_inputs: any; is_encoder_decoder: boolean; }): any; /** * This function extracts the model-specific `inputs` for generation. * @param {Object} params * @param {Tensor} [params.inputs=null] * @param {number} [params.bos_token_id=null] * @param {Record<string, Tensor|number[]>} [params.model_kwargs] * @returns {{inputs_tensor: Tensor, model_inputs: Record<string, Tensor>, model_input_name: string}} The model-specific inputs for generation. */ _prepare_model_inputs({ inputs, bos_token_id, model_kwargs }: { inputs?: Tensor; bos_token_id?: number; model_kwargs?: Record<string, Tensor | number[]>; }): { inputs_tensor: Tensor; model_inputs: Record<string, Tensor>; model_input_name: string; }; _prepare_encoder_decoder_kwargs_for_generation({ inputs_tensor, model_inputs, model_input_name, generation_config }: { inputs_tensor: any; model_inputs: any; model_input_name: any; generation_config: any; }): Promise<any>; /** * Prepares `decoder_input_ids` for generation with encoder-decoder models * @param {*} param0 */ _prepare_decoder_input_ids_for_generation({ batch_size, model_input_name, model_kwargs, decoder_start_token_id, bos_token_id, generation_config }: any): { input_ids: any; model_inputs: any; }; /** * Generates sequences of token ids for models with a language modeling head. * @param {import('./generation/parameters.js').GenerationFunctionParameters} options * @returns {Promise<ModelOutput|Tensor>} The output of the model, which can contain the generated token ids, attentions, and scores. */ generate({ inputs, generation_config, logits_processor, stopping_criteria, streamer, ...kwargs }: any): Promise<ModelOutput | Tensor>; /** * Returns an object containing past key values from the given decoder results object. * * @param {Object} decoderResults The decoder results object. * @param {Object} pastKeyValues The previous past key values. * @returns {Object} An object containing past key values. */ getPastKeyValues(decoderResults: any, pastKeyValues: any, disposeEncoderPKVs?: boolean): any; /** * Returns an object containing attentions from the given model output object. * * @param {Object} model_output The output of the model. * @returns {{cross_attentions?: Tensor[]}} An object containing attentions. */ getAttentions(model_output: any): { cross_attentions?: Tensor[]; }; /** * Adds past key values to the decoder feeds object. If pastKeyValues is null, creates new tensors for past key values. * * @param {Object} decoderFeeds The decoder feeds object to add past key values to. * @param {Object} pastKeyValues An object containing past key values. */ addPastKeyValues(decoderFeeds: any, pastKeyValues: any): void; encode_image({ pixel_values }: { pixel_values: any; }): Promise<any>; encode_text({ input_ids }: { input_ids: any; }): Promise<any>; } export class ModelOutput { } /** * Base class for model's outputs, with potential hidden states and attentions. */ export class BaseModelOutput extends ModelOutput { /** * @param {Object} output The output of the model. * @param {Tensor} output.last_hidden_state Sequence of hidden-states at the output of the last layer of the model. * @param {Tensor} [output.hidden_states] Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. * @param {Tensor} [output.attentions] Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. */ constructor({ last_hidden_state, hidden_states, attentions }: { last_hidden_state: Tensor; hidden_states?: Tensor; attentions?: Tensor; }); last_hidden_state: Tensor; hidden_states: Tensor; attentions: Tensor; } export class BertPreTrainedModel extends PreTrainedModel { } export class BertModel extends BertPreTrainedModel { } /** * BertForMaskedLM is a class representing a BERT model for masked language modeling. */ export class BertForMaskedLM extends BertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * BertForSequenceClassification is a class representing a BERT model for sequence classification. */ export class BertForSequenceClassification extends BertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * BertForTokenClassification is a class representing a BERT model for token classification. */ export class BertForTokenClassification extends BertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * BertForQuestionAnswering is a class representing a BERT model for question answering. */ export class BertForQuestionAnswering extends BertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class NomicBertPreTrainedModel extends PreTrainedModel { } export class NomicBertModel extends NomicBertPreTrainedModel { } export class RoFormerPreTrainedModel extends PreTrainedModel { } /** * The bare RoFormer Model transformer outputting raw hidden-states without any specific head on top. */ export class RoFormerModel extends RoFormerPreTrainedModel { } /** * RoFormer Model with a `language modeling` head on top. */ export class RoFormerForMaskedLM extends RoFormerPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * RoFormer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) */ export class RoFormerForSequenceClassification extends RoFormerPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) * e.g. for Named-Entity-Recognition (NER) tasks. */ export class RoFormerForTokenClassification extends RoFormerPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD * (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). */ export class RoFormerForQuestionAnswering extends RoFormerPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class ConvBertPreTrainedModel extends PreTrainedModel { } /** * The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top. */ export class ConvBertModel extends ConvBertPreTrainedModel { } /** * ConvBERT Model with a language modeling head on top. */ export class ConvBertForMaskedLM extends ConvBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * ConvBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) */ export class ConvBertForSequenceClassification extends ConvBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) * e.g. for Named-Entity-Recognition (NER) tasks. */ export class ConvBertForTokenClassification extends ConvBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD * (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`) */ export class ConvBertForQuestionAnswering extends ConvBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class ElectraPreTrainedModel extends PreTrainedModel { } /** * The bare Electra Model transformer outputting raw hidden-states without any specific head on top. * Identical to the BERT model except that it uses an additional linear layer between the embedding * layer and the encoder if the hidden size and embedding size are different. */ export class ElectraModel extends ElectraPreTrainedModel { } /** * Electra model with a language modeling head on top. */ export class ElectraForMaskedLM extends ElectraPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) */ export class ElectraForSequenceClassification extends ElectraPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * Electra model with a token classification head on top. */ export class ElectraForTokenClassification extends ElectraPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * LECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD * (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). */ export class ElectraForQuestionAnswering extends ElectraPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class CamembertPreTrainedModel extends PreTrainedModel { } /** * The bare CamemBERT Model transformer outputting raw hidden-states without any specific head on top. */ export class CamembertModel extends CamembertPreTrainedModel { } /** * CamemBERT Model with a `language modeling` head on top. */ export class CamembertForMaskedLM extends CamembertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * CamemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. */ export class CamembertForSequenceClassification extends CamembertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * CamemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. */ export class CamembertForTokenClassification extends CamembertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * CamemBERT Model with a span classification head on top for extractive question-answering tasks */ export class CamembertForQuestionAnswering extends CamembertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class DebertaPreTrainedModel extends PreTrainedModel { } /** * The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top. */ export class DebertaModel extends DebertaPreTrainedModel { } /** * DeBERTa Model with a `language modeling` head on top. */ export class DebertaForMaskedLM extends DebertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) */ export class DebertaForSequenceClassification extends DebertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. */ export class DebertaForTokenClassification extends DebertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear * layers on top of the hidden-states output to compute `span start logits` and `span end logits`). */ export class DebertaForQuestionAnswering extends DebertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class DebertaV2PreTrainedModel extends PreTrainedModel { } /** * The bare DeBERTa-V2 Model transformer outputting raw hidden-states without any specific head on top. */ export class DebertaV2Model extends DebertaV2PreTrainedModel { } /** * DeBERTa-V2 Model with a `language modeling` head on top. */ export class DebertaV2ForMaskedLM extends DebertaV2PreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * DeBERTa-V2 Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) */ export class DebertaV2ForSequenceClassification extends DebertaV2PreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * DeBERTa-V2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. */ export class DebertaV2ForTokenClassification extends DebertaV2PreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * DeBERTa-V2 Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear * layers on top of the hidden-states output to compute `span start logits` and `span end logits`). */ export class DebertaV2ForQuestionAnswering extends DebertaV2PreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class DistilBertPreTrainedModel extends PreTrainedModel { } export class DistilBertModel extends DistilBertPreTrainedModel { } /** * DistilBertForSequenceClassification is a class representing a DistilBERT model for sequence classification. */ export class DistilBertForSequenceClassification extends DistilBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * DistilBertForTokenClassification is a class representing a DistilBERT model for token classification. */ export class DistilBertForTokenClassification extends DistilBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * DistilBertForQuestionAnswering is a class representing a DistilBERT model for question answering. */ export class DistilBertForQuestionAnswering extends DistilBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } /** * DistilBertForMaskedLM is a class representing a DistilBERT model for masking task. */ export class DistilBertForMaskedLM extends DistilBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} returned object */ _call(model_inputs: any): Promise<MaskedLMOutput>; } export class EsmPreTrainedModel extends PreTrainedModel { } /** * The bare ESM Model transformer outputting raw hidden-states without any specific head on top. */ export class EsmModel extends EsmPreTrainedModel { } /** * ESM Model with a `language modeling` head on top. */ export class EsmForMaskedLM extends EsmPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) */ export class EsmForSequenceClassification extends EsmPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) * e.g. for Named-Entity-Recognition (NER) tasks. */ export class EsmForTokenClassification extends EsmPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } export class MobileBertPreTrainedModel extends PreTrainedModel { } export class MobileBertModel extends MobileBertPreTrainedModel { } /** * MobileBertForMaskedLM is a class representing a MobileBERT model for masking task. */ export class MobileBertForMaskedLM extends MobileBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} returned object */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) */ export class MobileBertForSequenceClassification extends MobileBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} returned object */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * MobileBert Model with a span classification head on top for extractive question-answering tasks */ export class MobileBertForQuestionAnswering extends MobileBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} returned object */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class MPNetPreTrainedModel extends PreTrainedModel { } /** * The bare MPNet Model transformer outputting raw hidden-states without any specific head on top. */ export class MPNetModel extends MPNetPreTrainedModel { } /** * MPNetForMaskedLM is a class representing a MPNet model for masked language modeling. */ export class MPNetForMaskedLM extends MPNetPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} An object containing the model's output logits for masked language modeling. */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * MPNetForSequenceClassification is a class representing a MPNet model for sequence classification. */ export class MPNetForSequenceClassification extends MPNetPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * MPNetForTokenClassification is a class representing a MPNet model for token classification. */ export class MPNetForTokenClassification extends MPNetPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * MPNetForQuestionAnswering is a class representing a MPNet model for question answering. */ export class MPNetForQuestionAnswering extends MPNetPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} An object containing the model's output logits for question answering. */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class SqueezeBertPreTrainedModel extends PreTrainedModel { } export class SqueezeBertModel extends SqueezeBertPreTrainedModel { } export class SqueezeBertForMaskedLM extends SqueezeBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} returned object */ _call(model_inputs: any): Promise<MaskedLMOutput>; } export class SqueezeBertForSequenceClassification extends SqueezeBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} returned object */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } export class SqueezeBertForQuestionAnswering extends SqueezeBertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} returned object */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class AlbertPreTrainedModel extends PreTrainedModel { } export class AlbertModel extends AlbertPreTrainedModel { } export class AlbertForSequenceClassification extends AlbertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} returned object */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } export class AlbertForQuestionAnswering extends AlbertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} returned object */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class AlbertForMaskedLM extends AlbertPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} returned object */ _call(model_inputs: any): Promise<MaskedLMOutput>; } export class T5PreTrainedModel extends PreTrainedModel { } export class T5Model extends T5PreTrainedModel { } /** * T5Model is a class representing a T5 model for conditional generation. */ export class T5ForConditionalGeneration extends T5PreTrainedModel { } /** * An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. */ export class LongT5PreTrainedModel extends PreTrainedModel { } /** * The bare LONGT5 Model transformer outputting raw hidden-states without any specific head on top. */ export class LongT5Model extends LongT5PreTrainedModel { } /** * LONGT5 Model with a `language modeling` head on top. */ export class LongT5ForConditionalGeneration extends LongT5PreTrainedModel { } export class MT5PreTrainedModel extends PreTrainedModel { } export class MT5Model extends MT5PreTrainedModel { } /** * A class representing a conditional sequence-to-sequence model based on the MT5 architecture. */ export class MT5ForConditionalGeneration extends MT5PreTrainedModel { } export class BartPretrainedModel extends PreTrainedModel { } /** * The bare BART Model outputting raw hidden-states without any specific head on top. */ export class BartModel extends BartPretrainedModel { } /** * The BART Model with a language modeling head. Can be used for summarization. */ export class BartForConditionalGeneration extends BartPretrainedModel { } /** * Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) */ export class BartForSequenceClassification extends BartPretrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } export class MBartPreTrainedModel extends PreTrainedModel { } /** * The bare MBART Model outputting raw hidden-states without any specific head on top. */ export class MBartModel extends MBartPreTrainedModel { } /** * The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models. */ export class MBartForConditionalGeneration extends MBartPreTrainedModel { } /** * MBart model with a sequence classification/head on top (a linear layer on top of the pooled output). */ export class MBartForSequenceClassification extends MBartPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} An object containing the model's output logits for sequence classification. */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } export class MBartForCausalLM extends MBartPreTrainedModel { } export class BlenderbotPreTrainedModel extends PreTrainedModel { } /** * The bare Blenderbot Model outputting raw hidden-states without any specific head on top. */ export class BlenderbotModel extends BlenderbotPreTrainedModel { } /** * The Blenderbot Model with a language modeling head. Can be used for summarization. */ export class BlenderbotForConditionalGeneration extends BlenderbotPreTrainedModel { } export class BlenderbotSmallPreTrainedModel extends PreTrainedModel { } /** * The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top. */ export class BlenderbotSmallModel extends BlenderbotSmallPreTrainedModel { } /** * The BlenderbotSmall Model with a language modeling head. Can be used for summarization. */ export class BlenderbotSmallForConditionalGeneration extends BlenderbotSmallPreTrainedModel { } export class RobertaPreTrainedModel extends PreTrainedModel { } export class RobertaModel extends RobertaPreTrainedModel { } /** * RobertaForMaskedLM class for performing masked language modeling on Roberta models. */ export class RobertaForMaskedLM extends RobertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} returned object */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * RobertaForSequenceClassification class for performing sequence classification on Roberta models. */ export class RobertaForSequenceClassification extends RobertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} returned object */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * RobertaForTokenClassification class for performing token classification on Roberta models. */ export class RobertaForTokenClassification extends RobertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * RobertaForQuestionAnswering class for performing question answering on Roberta models. */ export class RobertaForQuestionAnswering extends RobertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} returned object */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } /** * An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. */ export class XLMPreTrainedModel extends PreTrainedModel { } /** * The bare XLM Model transformer outputting raw hidden-states without any specific head on top. */ export class XLMModel extends XLMPreTrainedModel { } /** * The XLM Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). */ export class XLMWithLMHeadModel extends XLMPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} returned object */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * XLM Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) */ export class XLMForSequenceClassification extends XLMPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} returned object */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * XLM Model with a token classification head on top (a linear layer on top of the hidden-states output) */ export class XLMForTokenClassification extends XLMPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * XLM Model with a span classification head on top for extractive question-answering tasks */ export class XLMForQuestionAnswering extends XLMPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} returned object */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class XLMRobertaPreTrainedModel extends PreTrainedModel { } export class XLMRobertaModel extends XLMRobertaPreTrainedModel { } /** * XLMRobertaForMaskedLM class for performing masked language modeling on XLMRoberta models. */ export class XLMRobertaForMaskedLM extends XLMRobertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<MaskedLMOutput>} returned object */ _call(model_inputs: any): Promise<MaskedLMOutput>; } /** * XLMRobertaForSequenceClassification class for performing sequence classification on XLMRoberta models. */ export class XLMRobertaForSequenceClassification extends XLMRobertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<SequenceClassifierOutput>} returned object */ _call(model_inputs: any): Promise<SequenceClassifierOutput>; } /** * XLMRobertaForTokenClassification class for performing token classification on XLMRoberta models. */ export class XLMRobertaForTokenClassification extends XLMRobertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<TokenClassifierOutput>} An object containing the model's output logits for token classification. */ _call(model_inputs: any): Promise<TokenClassifierOutput>; } /** * XLMRobertaForQuestionAnswering class for performing question answering on XLMRoberta models. */ export class XLMRobertaForQuestionAnswering extends XLMRobertaPreTrainedModel { /** * Calls the model on new inputs. * * @param {Object} model_inputs The inputs to the model. * @returns {Promise<QuestionAnsweringModelOutput>} returned object */ _call(model_inputs: any): Promise<QuestionAnsweringModelOutput>; } export class ASTPreTrainedModel extends PreTrainedModel { } /** * The bare AST Model transformer outputting raw hidden-states without any specific head on top. */ export class ASTModel extends ASTPreTrainedModel { } /** * Audio Spectrogram Transformer model with an audio classification head on top * (a linear layer on top of the pooled output) e.g. for datasets like AudioSet, Speech Commands v2. */ export class ASTForAudioClassification extends ASTPreTrainedModel { } export class WhisperPreTrainedModel extends PreTrainedModel { requires_attention_mask: boolean; } /** * WhisperModel class for training Whisper models without a language model head. */ export class WhisperModel extends WhisperPreTrainedModel { } /** * WhisperForConditionalGeneration class for generating conditional outputs from Whisper models. */ export class WhisperForConditionalGeneration extends WhisperPreTrainedModel { _prepare_generation_config(generation_config: any, kwargs: any): WhisperGenerationConfig; /** * * @param {WhisperGenerationConfig} generation_config */ _retrieve_init_tokens(generation_config: WhisperGenerationConfig): number[]; /** * Calculates token-level timestamps using the encoder-decoder cross-attentions and * dynamic time-warping (DTW) to map each output token to a position in the input audio. * If `num_frames` is specified, the encoder-decoder cross-attentions will be cropped before applying DTW. * @param {Object} generate_outputs Outputs generated by the model * @param {Tensor[][]} generate_outputs.cross_attentions The cross attentions output by the model * @param {Tensor} generate_outputs.sequences The sequences output by the model * @param {number[][]} alignment_heads Alignment heads of the model * @param {number} [num_frames=null] Number of frames in the input audio. * @param {number} [time_precision=0.02] Precision of the timestamps in seconds * @returns {Tensor} tensor containing the timestamps in seconds for each predicted token */ _extract_token_timestamps(generate_outputs: { cross_attentions: Tensor[][]; sequences: Tensor; }, alignment_heads: number[][], num_frames?: number, time_precision?: number): Tensor; } /** * Vision Encoder-Decoder model based on OpenAI's GPT architecture for image captioning and other vision tasks */ export class VisionEncoderDecoderModel extends PreTrainedModel { } export class LlavaPreTrainedModel extends PreTrainedModel { } /** * The LLAVA model which consists of a vision backbone and a language model. */ export class LlavaForConditionalGeneration extends LlavaPreTrainedModel { _merge_input_ids_with_image_features({ inputs_embeds, image_features, input_ids, attention_mask, }: { inputs_embeds: any; image_features: any; input_ids: any; attention_mask: any; }): { inputs_embeds: any; attention_mask: any; }; } export class LlavaOnevisionForConditionalGeneration extends LlavaForConditionalGeneration { } export class Moondream1ForConditionalGeneration extends LlavaForConditionalGeneration { } export class Florence2PreTrainedModel extends PreTrainedModel { } export class Florence2ForConditionalGeneration extends Florence2PreTrainedModel { _merge_input_ids_with_image_features({ inputs_embeds, image_features, input_ids, attention_mask, }: { inputs_embeds: any; image_features: any; input_ids: any; attention_mask: any; }): { inputs_embeds: Tensor; attention_mask: Tensor; }; _prepare_inputs_embeds({ input_ids, pixel_values, inputs_embeds, atte