UNPKG

transformers-fork

Version:

State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!

51 lines • 2.02 kB
declare const LogitsSampler_base: new () => { (...args: any[]): any; _call(...args: any[]): any; }; /** * Sampler is a base class for all sampling methods used for text generation. */ export class LogitsSampler extends LogitsSampler_base { /** * Returns a Sampler object based on the specified options. * @param {GenerationConfig} generation_config An object containing options for the sampler. * @returns {LogitsSampler} A Sampler object. */ static getSampler(generation_config: GenerationConfig): LogitsSampler; /** * Creates a new Sampler object with the specified generation config. * @param {GenerationConfig} generation_config The generation config. */ constructor(generation_config: GenerationConfig); generation_config: GenerationConfig; /** * Executes the sampler, using the specified logits. * @param {Tensor} logits * @returns {Promise<[bigint, number][]>} */ _call(logits: Tensor): Promise<[bigint, number][]>; /** * Abstract method for sampling the logits. * @param {Tensor} logits * @throws {Error} If not implemented in subclass. * @returns {Promise<[bigint, number][]>} */ sample(logits: Tensor): Promise<[bigint, number][]>; /** * Returns the specified logits as an array, with temperature applied. * @param {Tensor} logits * @param {number} index * @returns {Float32Array} */ getLogits(logits: Tensor, index: number): Float32Array; /** * Selects an item randomly based on the specified probabilities. * @param {import("../transformers.js").DataArray} probabilities An array of probabilities to use for selection. * @returns {number} The index of the selected item. */ randomSelect(probabilities: import("../transformers.js").DataArray): number; } import { GenerationConfig } from '../generation/configuration_utils.js'; import { Tensor } from "../utils/tensor.js"; export {}; //# sourceMappingURL=logits_sampler.d.ts.map