transformers-fork
Version:
State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!
80 lines • 3.89 kB
TypeScript
declare const Processor_base: new () => {
(...args: any[]): any;
_call(...args: any[]): any;
};
/**
* @typedef {Object} ProcessorProperties Additional processor-specific properties.
* @typedef {import('../utils/hub.js').PretrainedOptions & ProcessorProperties} PretrainedProcessorOptions
*/
/**
* Represents a Processor that extracts features from an input.
*/
export class Processor extends Processor_base {
static classes: string[];
static uses_processor_config: boolean;
/**
* Instantiate one of the processor classes of the library from a pretrained model.
*
* The processor class to instantiate is selected based on the `feature_extractor_type` property of the config object
* (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible)
*
* @param {string} pretrained_model_name_or_path The name or path of the pretrained model. Can be either:
* - A string, the *model id* of a pretrained processor hosted inside a model repo on huggingface.co.
* Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
* user or organization name, like `dbmdz/bert-base-german-cased`.
* - A path to a *directory* containing processor files, e.g., `./my_model_directory/`.
* @param {PretrainedProcessorOptions} options Additional options for loading the processor.
*
* @returns {Promise<Processor>} A new instance of the Processor class.
*/
static from_pretrained(pretrained_model_name_or_path: string, options: PretrainedProcessorOptions): Promise<Processor>;
/**
* Creates a new Processor with the given components
* @param {Object} config
* @param {Record<string, Object>} components
*/
constructor(config: any, components: Record<string, any>);
config: any;
components: Record<string, any>;
/**
* @returns {import('./image_processors_utils.js').ImageProcessor|undefined} The image processor of the processor, if it exists.
*/
get image_processor(): import("./image_processors_utils.js").ImageProcessor | undefined;
/**
* @returns {import('../tokenizers.js').PreTrainedTokenizer|undefined} The tokenizer of the processor, if it exists.
*/
get tokenizer(): import("../tokenizers.js").PreTrainedTokenizer | undefined;
/**
* @returns {import('./feature_extraction_utils.js').FeatureExtractor|undefined} The feature extractor of the processor, if it exists.
*/
get feature_extractor(): import("./feature_extraction_utils.js").FeatureExtractor | undefined;
apply_chat_template(messages: any, options?: {}): string | number[] | number[][] | import("../transformers.js").Tensor | {
/**
* List of token ids to be fed to a model.
*/
input_ids: number[] | number[][] | import("../transformers.js").Tensor;
/**
* List of indices specifying which tokens should be attended to by the model.
*/
attention_mask: number[] | number[][] | import("../transformers.js").Tensor;
/**
* List of token type ids to be fed to a model.
*/
token_type_ids?: number[] | number[][] | import("../transformers.js").Tensor;
};
batch_decode(...args: any[]): string[];
/**
* Calls the feature_extractor function with the given input.
* @param {any} input The input to extract features from.
* @param {...any} args Additional arguments.
* @returns {Promise<any>} A Promise that resolves with the extracted features.
*/
_call(input: any, ...args: any[]): Promise<any>;
}
/**
* Additional processor-specific properties.
*/
export type ProcessorProperties = any;
export type PretrainedProcessorOptions = import("../utils/hub.js").PretrainedOptions & ProcessorProperties;
export {};
//# sourceMappingURL=processing_utils.d.ts.map