UNPKG

tractjs

Version:

A library for running ONNX and TensorFlow inference in the browser.

46 lines (45 loc) 1.72 kB
import type { DataType } from "tractjs-core"; declare type DimSymbol = string | { id: string; slope: number; intercept: number; }; declare type Metadata = { [key: string]: string; }; declare type Format = "onnx" | "tensorflow"; declare type Shape = Array<number | DimSymbol>; declare type Fact = [DataType, Shape]; /** * Model loading options. */ declare type Options = { /** * The model format. Either `"onnx"` or `"tensorflow"`. If undefined, will attempt to infer from URL file extension. */ format?: Format; /** * Whether to optimize the model. Currently only works if the input shape is fully determined. If you need e. g. dynamic batch sizes set this to `false`. `true` by default. */ optimize?: boolean; /** * The node names of model inputs. Passed to [`set_input_names`](https://docs.rs/tract-core/0.15.2/tract_core/model/struct.ModelImpl.html#method.set_input_names). */ inputs?: Array<string>; /** * The node names of model outputs. Passed to [`set_output_names`](https://docs.rs/tract-core/0.15.2/tract_core/model/struct.ModelImpl.html#method.set_output_names). */ outputs?: Array<string>; /** * Mapping of indices to facts to set for the input. Each fact is passed to [`set_input_fact`](https://docs.rs/tract-core/0.15.2/tract_core/model/struct.ModelImpl.html#method.set_input_fact). */ inputFacts?: Record<number, Fact>; }; declare type InternalOptions = { format: Format; optimize: boolean; inputs?: Array<string>; outputs?: Array<string>; inputFacts: Record<number, Fact>; }; export { Format, Options, InternalOptions, Metadata };