UNPKG

total-serialism

Version:

A set of methods for the generation and transformation of number sequences useful in algorithmic composition

189 lines (172 loc) 5.01 kB
//======================================================================= // statistic.js // part of 'total-serialism' Package // by Timo Hoogland (@t.mo / @tmhglnd), www.timohoogland.com // MIT License // // Statistical related methods and algorithms that can be helpful in // analysis of number sequences, melodies, rhythms and more //======================================================================= const Mod = require('./transform'); const { maximum, minimum, flatten, toArray } = require('./utility'); // sort an array of numbers or strings. sorts ascending // or descending in numerical and alphabetical order // // @param {Array} -> array to sort // @param {Int} -> sort direction (positive value is ascending) // @return {Array} -> sorted array, object includes order-indeces // function sort(a=[0], d=1){ a = toArray(a); let arr; if (a.map(x => typeof x).includes('string')){ arr = a.slice().sort(); } else { arr = a.slice().sort((a,b) => { return a-b; }) } if (d < 0){ return arr.reverse(); } return arr; } exports.sort = sort; // Return the biggest value from an array // // @param {NumberArray} -> input array // @return {Number} -> biggest value // exports.maximum = maximum; exports.max = maximum; // Return the lowest value from an array // // @param {NumberArray} -> input array // @return {Number} -> lowest value // exports.minimum = minimum; exports.min = minimum; // Return the average (artihmetic mean value) from an array // The mean is a measure of central tendency // // @param {NumberArray} -> input array of n-numbers // @param {Bool} -> enable/disable the deep flag for n-dim arrays (default=true) // @return {Number} -> mean // function mean(a=[0], d=true){ if (!Array.isArray(a)) { return a; } if (d) { a = flatten(a); } let s = 0; for (let i in a){ s += isNaN(a[i])? 0 : a[i]; } return s / a.length; } exports.mean = mean; exports.average = mean; // Return the median (center value) from an array // The median is a measure of central tendency // If array is even number of values the median is the // average of the two center values // Ignores other datatypes then Number and Boolean // // @param {NumberArray} -> input array of n-numbers // @param {Bool} -> enable/disable the deep flag for n-dim arrays (default=true) // @return {Number} -> median // function median(a=[0], d=true){ if (!Array.isArray(a)) { return a; } if (d) { a = flatten(a); } let arr = a.slice(); if (arr.map(x => typeof x).includes('string')) { arr = Mod.filterType(arr, ['number', 'boolean']); } arr = arr.sort((a,b) => { return a-b; }); let c = Math.floor(arr.length/2); if (!(arr.length % 2)){ return (arr[c] + arr[c-1]) / 2; } return arr[c]; } exports.median = median; exports.center = median; // Returns the mode(s) (most common value) from an array // The mode is a measure of central tendency // Returns an array when multi-modal system // // @param {NumberArray} -> input array of n-numbers // @param {Bool} -> enable/disable the deep flag for n-dim arrays (default=true) // @return {Number/Array} -> the mode or modes // function mode(a=[0], d=true){ if (!Array.isArray(a)) { return a; } if (d) { a = flatten(a); } let arr = a.slice().sort((a,b) => { return a-b; }); let amount = 1; let streak = 0; let modes = []; for (let i=1; i<arr.length; i++){ if (arr[i-1] != arr[i]){ amount = 0; } amount++; if (amount > streak){ streak = amount; modes = [arr[i]]; } else if (amount == streak){ modes.push(arr[i]); } } return modes; } exports.mode = mode; exports.common = mode; // Compare two arrays recursively and if all values // of the array and subarrays are equal to eachother // return a true boolean // // @params {Array} -> compare array1 // @params {Array} -> compare array2 // @return {Bool} -> true or false // function compare(a1=[0], a2){ a1 = toArray(a1); a2 = toArray(a2); if (a1.length !== a2.length){ return false; } for (let i in a1){ if (Array.isArray(a1[i])){ return compare(a1[i], a2[i]); } else if (a1[i] !== a2[i]){ return false; } } return true; } exports.compare = compare; // exports.equal = compare; (deprecated for equal in utility operator) // Return the difference between every consecutive value in an array // With melodic content from a chromatic scale this can be seen as // a list of intervals that, when followed from the same note, results // in the same melody. // // @param {Array} -> array to calculate from // @param {Bool} -> returns diff between first and last (optional, default=false) // @return {Array} -> list of changes // function change(a=[0, 0], l=false){ if (a.length < 2 || !Array.isArray(a)){ return [0]; } let len = a.length; let arr = []; for (let i=1; i<len; i++){ arr.push(a[i] - a[i-1]); } // optionally also return diff from first and last value if (l){ arr.push(a[0] - a[a.length-1]); } return arr; } exports.change = change; exports.delta = change; exports.difference = change; exports.diff = change;