UNPKG

topogram

Version:

Create continuous area cartograms with TopoJSON and D3

1,804 lines (1,604 loc) 75.6 kB
(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (factory((global.topogram = global.topogram || {}))); }(this, function (exports) { 'use strict'; function ascending(a, b) { return a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN; } function bisector(compare) { if (compare.length === 1) compare = ascendingComparator(compare); return { left: function(a, x, lo, hi) { if (lo == null) lo = 0; if (hi == null) hi = a.length; while (lo < hi) { var mid = lo + hi >>> 1; if (compare(a[mid], x) < 0) lo = mid + 1; else hi = mid; } return lo; }, right: function(a, x, lo, hi) { if (lo == null) lo = 0; if (hi == null) hi = a.length; while (lo < hi) { var mid = lo + hi >>> 1; if (compare(a[mid], x) > 0) hi = mid; else lo = mid + 1; } return lo; } }; } function ascendingComparator(f) { return function(d, x) { return ascending(f(d), x); }; } var ascendingBisect = bisector(ascending); function merge(arrays) { var n = arrays.length, m, i = -1, j = 0, merged, array; while (++i < n) j += arrays[i].length; merged = new Array(j); while (--n >= 0) { array = arrays[n]; m = array.length; while (--m >= 0) { merged[--j] = array[m]; } } return merged; } function sum(array, f) { var s = 0, n = array.length, a, i = -1; if (f == null) { while (++i < n) if (a = +array[i]) s += a; // Note: zero and null are equivalent. } else { while (++i < n) if (a = +f(array[i], i, array)) s += a; } return s; } // Adds floating point numbers with twice the normal precision. // Reference: J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and // Fast Robust Geometric Predicates, Discrete & Computational Geometry 18(3) // 305–363 (1997). // Code adapted from GeographicLib by Charles F. F. Karney, // http://geographiclib.sourceforge.net/ function adder() { return new Adder; } function Adder() { this.reset(); } Adder.prototype = { constructor: Adder, reset: function() { this.s = // rounded value this.t = 0; // exact error }, add: function(y) { add(temp, y, this.t); add(this, temp.s, this.s); if (this.s) this.t += temp.t; else this.s = temp.t; }, valueOf: function() { return this.s; } }; var temp = new Adder; function add(adder, a, b) { var x = adder.s = a + b, bv = x - a, av = x - bv; adder.t = (a - av) + (b - bv); } var epsilon = 1e-6; var pi = Math.PI; var halfPi = pi / 2; var quarterPi = pi / 4; var tau = pi * 2; var degrees = 180 / pi; var radians = pi / 180; var abs = Math.abs; var atan = Math.atan; var atan2 = Math.atan2; var cos = Math.cos; var sin = Math.sin; var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; }; var sqrt = Math.sqrt; function acos(x) { return x > 1 ? 0 : x < -1 ? pi : Math.acos(x); } function asin(x) { return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x); } function noop() {} function streamGeometry(geometry, stream) { if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) { streamGeometryType[geometry.type](geometry, stream); } } var streamObjectType = { Feature: function(object, stream) { streamGeometry(object.geometry, stream); }, FeatureCollection: function(object, stream) { var features = object.features, i = -1, n = features.length; while (++i < n) streamGeometry(features[i].geometry, stream); } }; var streamGeometryType = { Sphere: function(object, stream) { stream.sphere(); }, Point: function(object, stream) { object = object.coordinates; stream.point(object[0], object[1], object[2]); }, MultiPoint: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]); }, LineString: function(object, stream) { streamLine(object.coordinates, stream, 0); }, MultiLineString: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) streamLine(coordinates[i], stream, 0); }, Polygon: function(object, stream) { streamPolygon(object.coordinates, stream); }, MultiPolygon: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) streamPolygon(coordinates[i], stream); }, GeometryCollection: function(object, stream) { var geometries = object.geometries, i = -1, n = geometries.length; while (++i < n) streamGeometry(geometries[i], stream); } }; function streamLine(coordinates, stream, closed) { var i = -1, n = coordinates.length - closed, coordinate; stream.lineStart(); while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]); stream.lineEnd(); } function streamPolygon(coordinates, stream) { var i = -1, n = coordinates.length; stream.polygonStart(); while (++i < n) streamLine(coordinates[i], stream, 1); stream.polygonEnd(); } function geoStream(object, stream) { if (object && streamObjectType.hasOwnProperty(object.type)) { streamObjectType[object.type](object, stream); } else { streamGeometry(object, stream); } } var areaRingSum = adder(); var areaSum = adder(); var lambda00; var phi00; var lambda0; var cosPhi0; var sinPhi0; var areaStream = { point: noop, lineStart: noop, lineEnd: noop, polygonStart: function() { areaRingSum.reset(); areaStream.lineStart = areaRingStart; areaStream.lineEnd = areaRingEnd; }, polygonEnd: function() { var areaRing = +areaRingSum; areaSum.add(areaRing < 0 ? tau + areaRing : areaRing); this.lineStart = this.lineEnd = this.point = noop; }, sphere: function() { areaSum.add(tau); } }; function areaRingStart() { areaStream.point = areaPointFirst; } function areaRingEnd() { areaPoint(lambda00, phi00); } function areaPointFirst(lambda, phi) { areaStream.point = areaPoint; lambda00 = lambda, phi00 = phi; lambda *= radians, phi *= radians; lambda0 = lambda, cosPhi0 = cos(phi = phi / 2 + quarterPi), sinPhi0 = sin(phi); } function areaPoint(lambda, phi) { lambda *= radians, phi *= radians; phi = phi / 2 + quarterPi; // half the angular distance from south pole // Spherical excess E for a spherical triangle with vertices: south pole, // previous point, current point. Uses a formula derived from Cagnoli’s // theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2). var dLambda = lambda - lambda0, sdLambda = dLambda >= 0 ? 1 : -1, adLambda = sdLambda * dLambda, cosPhi = cos(phi), sinPhi = sin(phi), k = sinPhi0 * sinPhi, u = cosPhi0 * cosPhi + k * cos(adLambda), v = k * sdLambda * sin(adLambda); areaRingSum.add(atan2(v, u)); // Advance the previous points. lambda0 = lambda, cosPhi0 = cosPhi, sinPhi0 = sinPhi; } function spherical(cartesian) { return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])]; } function cartesian(spherical) { var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi); return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)]; } function cartesianDot(a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } function cartesianCross(a, b) { return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]]; } // TODO return a function cartesianAddInPlace(a, b) { a[0] += b[0], a[1] += b[1], a[2] += b[2]; } function cartesianScale(vector, k) { return [vector[0] * k, vector[1] * k, vector[2] * k]; } // TODO return d function cartesianNormalizeInPlace(d) { var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]); d[0] /= l, d[1] /= l, d[2] /= l; } var lambda0$1; var phi0; var lambda1; var phi1; var lambda2; var lambda00$1; var phi00$1; var p0; var deltaSum = adder(); var ranges; var range$1; var boundsStream = { point: boundsPoint, lineStart: boundsLineStart, lineEnd: boundsLineEnd, polygonStart: function() { boundsStream.point = boundsRingPoint; boundsStream.lineStart = boundsRingStart; boundsStream.lineEnd = boundsRingEnd; deltaSum.reset(); areaStream.polygonStart(); }, polygonEnd: function() { areaStream.polygonEnd(); boundsStream.point = boundsPoint; boundsStream.lineStart = boundsLineStart; boundsStream.lineEnd = boundsLineEnd; if (areaRingSum < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90); else if (deltaSum > epsilon) phi1 = 90; else if (deltaSum < -epsilon) phi0 = -90; range$1[0] = lambda0$1, range$1[1] = lambda1; } }; function boundsPoint(lambda, phi) { ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]); if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; } function linePoint(lambda, phi) { var p = cartesian([lambda * radians, phi * radians]); if (p0) { var normal = cartesianCross(p0, p), equatorial = [normal[1], -normal[0], 0], inflection = cartesianCross(equatorial, normal); cartesianNormalizeInPlace(inflection); inflection = spherical(inflection); var delta = lambda - lambda2, sign = delta > 0 ? 1 : -1, lambdai = inflection[0] * degrees * sign, phii, antimeridian = abs(delta) > 180; if (antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) { phii = inflection[1] * degrees; if (phii > phi1) phi1 = phii; } else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) { phii = -inflection[1] * degrees; if (phii < phi0) phi0 = phii; } else { if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; } if (antimeridian) { if (lambda < lambda2) { if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda; } else { if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda; } } else { if (lambda1 >= lambda0$1) { if (lambda < lambda0$1) lambda0$1 = lambda; if (lambda > lambda1) lambda1 = lambda; } else { if (lambda > lambda2) { if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda; } else { if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda; } } } } else { ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]); } if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; p0 = p, lambda2 = lambda; } function boundsLineStart() { boundsStream.point = linePoint; } function boundsLineEnd() { range$1[0] = lambda0$1, range$1[1] = lambda1; boundsStream.point = boundsPoint; p0 = null; } function boundsRingPoint(lambda, phi) { if (p0) { var delta = lambda - lambda2; deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta); } else { lambda00$1 = lambda, phi00$1 = phi; } areaStream.point(lambda, phi); linePoint(lambda, phi); } function boundsRingStart() { areaStream.lineStart(); } function boundsRingEnd() { boundsRingPoint(lambda00$1, phi00$1); areaStream.lineEnd(); if (abs(deltaSum) > epsilon) lambda0$1 = -(lambda1 = 180); range$1[0] = lambda0$1, range$1[1] = lambda1; p0 = null; } // Finds the left-right distance between two longitudes. // This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want // the distance between ±180° to be 360°. function angle(lambda0, lambda1) { return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1; } var W0; var W1; var X0; var Y0; var Z0; var X1; var Y1; var Z1; var X2; var Y2; var Z2; var lambda00$2; var phi00$2; var x0; var y0; var z0; // previous point var centroidStream = { sphere: noop, point: centroidPoint, lineStart: centroidLineStart, lineEnd: centroidLineEnd, polygonStart: function() { centroidStream.lineStart = centroidRingStart; centroidStream.lineEnd = centroidRingEnd; }, polygonEnd: function() { centroidStream.lineStart = centroidLineStart; centroidStream.lineEnd = centroidLineEnd; } }; // Arithmetic mean of Cartesian vectors. function centroidPoint(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos(phi); centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)); } function centroidPointCartesian(x, y, z) { ++W0; X0 += (x - X0) / W0; Y0 += (y - Y0) / W0; Z0 += (z - Z0) / W0; } function centroidLineStart() { centroidStream.point = centroidLinePointFirst; } function centroidLinePointFirst(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos(phi); x0 = cosPhi * cos(lambda); y0 = cosPhi * sin(lambda); z0 = sin(phi); centroidStream.point = centroidLinePoint; centroidPointCartesian(x0, y0, z0); } function centroidLinePoint(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos(phi), x = cosPhi * cos(lambda), y = cosPhi * sin(lambda), z = sin(phi), w = atan2(sqrt((w = y0 * z - z0 * y) * w + (w = z0 * x - x0 * z) * w + (w = x0 * y - y0 * x) * w), x0 * x + y0 * y + z0 * z); W1 += w; X1 += w * (x0 + (x0 = x)); Y1 += w * (y0 + (y0 = y)); Z1 += w * (z0 + (z0 = z)); centroidPointCartesian(x0, y0, z0); } function centroidLineEnd() { centroidStream.point = centroidPoint; } // See J. E. Brock, The Inertia Tensor for a Spherical Triangle, // J. Applied Mechanics 42, 239 (1975). function centroidRingStart() { centroidStream.point = centroidRingPointFirst; } function centroidRingEnd() { centroidRingPoint(lambda00$2, phi00$2); centroidStream.point = centroidPoint; } function centroidRingPointFirst(lambda, phi) { lambda00$2 = lambda, phi00$2 = phi; lambda *= radians, phi *= radians; centroidStream.point = centroidRingPoint; var cosPhi = cos(phi); x0 = cosPhi * cos(lambda); y0 = cosPhi * sin(lambda); z0 = sin(phi); centroidPointCartesian(x0, y0, z0); } function centroidRingPoint(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos(phi), x = cosPhi * cos(lambda), y = cosPhi * sin(lambda), z = sin(phi), cx = y0 * z - z0 * y, cy = z0 * x - x0 * z, cz = x0 * y - y0 * x, m = sqrt(cx * cx + cy * cy + cz * cz), w = asin(m), // line weight = angle v = m && -w / m; // area weight multiplier X2 += v * cx; Y2 += v * cy; Z2 += v * cz; W1 += w; X1 += w * (x0 + (x0 = x)); Y1 += w * (y0 + (y0 = y)); Z1 += w * (z0 + (z0 = z)); centroidPointCartesian(x0, y0, z0); } function compose(a, b) { function compose(x, y) { return x = a(x, y), b(x[0], x[1]); } if (a.invert && b.invert) compose.invert = function(x, y) { return x = b.invert(x, y), x && a.invert(x[0], x[1]); }; return compose; } function rotationIdentity(lambda, phi) { return [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi]; } rotationIdentity.invert = rotationIdentity; function rotateRadians(deltaLambda, deltaPhi, deltaGamma) { return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma)) : rotationLambda(deltaLambda)) : (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma) : rotationIdentity); } function forwardRotationLambda(deltaLambda) { return function(lambda, phi) { return lambda += deltaLambda, [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi]; }; } function rotationLambda(deltaLambda) { var rotation = forwardRotationLambda(deltaLambda); rotation.invert = forwardRotationLambda(-deltaLambda); return rotation; } function rotationPhiGamma(deltaPhi, deltaGamma) { var cosDeltaPhi = cos(deltaPhi), sinDeltaPhi = sin(deltaPhi), cosDeltaGamma = cos(deltaGamma), sinDeltaGamma = sin(deltaGamma); function rotation(lambda, phi) { var cosPhi = cos(phi), x = cos(lambda) * cosPhi, y = sin(lambda) * cosPhi, z = sin(phi), k = z * cosDeltaPhi + x * sinDeltaPhi; return [ atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi), asin(k * cosDeltaGamma + y * sinDeltaGamma) ]; } rotation.invert = function(lambda, phi) { var cosPhi = cos(phi), x = cos(lambda) * cosPhi, y = sin(lambda) * cosPhi, z = sin(phi), k = z * cosDeltaGamma - y * sinDeltaGamma; return [ atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi), asin(k * cosDeltaPhi - x * sinDeltaPhi) ]; }; return rotation; } // Generates a circle centered at [0°, 0°], with a given radius and precision. function circleStream(stream, radius, delta, direction, t0, t1) { if (!delta) return; var cosRadius = cos(radius), sinRadius = sin(radius), step = direction * delta; if (t0 == null) { t0 = radius + direction * tau; t1 = radius - step / 2; } else { t0 = circleRadius(cosRadius, t0); t1 = circleRadius(cosRadius, t1); if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau; } for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) { point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]); stream.point(point[0], point[1]); } } // Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0]. function circleRadius(cosRadius, point) { point = cartesian(point), point[0] -= cosRadius; cartesianNormalizeInPlace(point); var radius = acos(-point[1]); return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau; } function clipBuffer() { var lines = [], line; return { point: function(x, y) { line.push([x, y]); }, lineStart: function() { lines.push(line = []); }, lineEnd: noop, rejoin: function() { if (lines.length > 1) lines.push(lines.pop().concat(lines.shift())); }, result: function() { var result = lines; lines = []; line = null; return result; } }; } function clipLine(a, b, x0, y0, x1, y1) { var ax = a[0], ay = a[1], bx = b[0], by = b[1], t0 = 0, t1 = 1, dx = bx - ax, dy = by - ay, r; r = x0 - ax; if (!dx && r > 0) return; r /= dx; if (dx < 0) { if (r < t0) return; if (r < t1) t1 = r; } else if (dx > 0) { if (r > t1) return; if (r > t0) t0 = r; } r = x1 - ax; if (!dx && r < 0) return; r /= dx; if (dx < 0) { if (r > t1) return; if (r > t0) t0 = r; } else if (dx > 0) { if (r < t0) return; if (r < t1) t1 = r; } r = y0 - ay; if (!dy && r > 0) return; r /= dy; if (dy < 0) { if (r < t0) return; if (r < t1) t1 = r; } else if (dy > 0) { if (r > t1) return; if (r > t0) t0 = r; } r = y1 - ay; if (!dy && r < 0) return; r /= dy; if (dy < 0) { if (r > t1) return; if (r > t0) t0 = r; } else if (dy > 0) { if (r < t0) return; if (r < t1) t1 = r; } if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy; if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy; return true; } function pointEqual(a, b) { return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon; } function Intersection(point, points, other, entry) { this.x = point; this.z = points; this.o = other; // another intersection this.e = entry; // is an entry? this.v = false; // visited this.n = this.p = null; // next & previous } // A generalized polygon clipping algorithm: given a polygon that has been cut // into its visible line segments, and rejoins the segments by interpolating // along the clip edge. function clipPolygon(segments, compareIntersection, startInside, interpolate, stream) { var subject = [], clip = [], i, n; segments.forEach(function(segment) { if ((n = segment.length - 1) <= 0) return; var n, p0 = segment[0], p1 = segment[n], x; // If the first and last points of a segment are coincident, then treat as a // closed ring. TODO if all rings are closed, then the winding order of the // exterior ring should be checked. if (pointEqual(p0, p1)) { stream.lineStart(); for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]); stream.lineEnd(); return; } subject.push(x = new Intersection(p0, segment, null, true)); clip.push(x.o = new Intersection(p0, null, x, false)); subject.push(x = new Intersection(p1, segment, null, false)); clip.push(x.o = new Intersection(p1, null, x, true)); }); if (!subject.length) return; clip.sort(compareIntersection); link(subject); link(clip); for (i = 0, n = clip.length; i < n; ++i) { clip[i].e = startInside = !startInside; } var start = subject[0], points, point; while (1) { // Find first unvisited intersection. var current = start, isSubject = true; while (current.v) if ((current = current.n) === start) return; points = current.z; stream.lineStart(); do { current.v = current.o.v = true; if (current.e) { if (isSubject) { for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]); } else { interpolate(current.x, current.n.x, 1, stream); } current = current.n; } else { if (isSubject) { points = current.p.z; for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]); } else { interpolate(current.x, current.p.x, -1, stream); } current = current.p; } current = current.o; points = current.z; isSubject = !isSubject; } while (!current.v); stream.lineEnd(); } } function link(array) { if (!(n = array.length)) return; var n, i = 0, a = array[0], b; while (++i < n) { a.n = b = array[i]; b.p = a; a = b; } a.n = b = array[0]; b.p = a; } var clipMax = 1e9; var clipMin = -clipMax; // TODO Use d3-polygon’s polygonContains here for the ring check? // TODO Eliminate duplicate buffering in clipBuffer and polygon.push? function clipExtent(x0, y0, x1, y1) { function visible(x, y) { return x0 <= x && x <= x1 && y0 <= y && y <= y1; } function interpolate(from, to, direction, stream) { var a = 0, a1 = 0; if (from == null || (a = corner(from, direction)) !== (a1 = corner(to, direction)) || comparePoint(from, to) < 0 ^ direction > 0) { do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0); while ((a = (a + direction + 4) % 4) !== a1); } else { stream.point(to[0], to[1]); } } function corner(p, direction) { return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3 : abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1 : abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0 : direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon } function compareIntersection(a, b) { return comparePoint(a.x, b.x); } function comparePoint(a, b) { var ca = corner(a, 1), cb = corner(b, 1); return ca !== cb ? ca - cb : ca === 0 ? b[1] - a[1] : ca === 1 ? a[0] - b[0] : ca === 2 ? a[1] - b[1] : b[0] - a[0]; } return function(stream) { var activeStream = stream, bufferStream = clipBuffer(), segments, polygon, ring, x__, y__, v__, // first point x_, y_, v_, // previous point first, clean; var clipStream = { point: point, lineStart: lineStart, lineEnd: lineEnd, polygonStart: polygonStart, polygonEnd: polygonEnd }; function point(x, y) { if (visible(x, y)) activeStream.point(x, y); } function polygonInside() { var winding = 0; for (var i = 0, n = polygon.length; i < n; ++i) { for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) { a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1]; if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; } else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; } } } return winding; } // Buffer geometry within a polygon and then clip it en masse. function polygonStart() { activeStream = bufferStream, segments = [], polygon = [], clean = true; } function polygonEnd() { var startInside = polygonInside(), cleanInside = clean && startInside, visible = (segments = merge(segments)).length; if (cleanInside || visible) { stream.polygonStart(); if (cleanInside) { stream.lineStart(); interpolate(null, null, 1, stream); stream.lineEnd(); } if (visible) { clipPolygon(segments, compareIntersection, startInside, interpolate, stream); } stream.polygonEnd(); } activeStream = stream, segments = polygon = ring = null; } function lineStart() { clipStream.point = linePoint; if (polygon) polygon.push(ring = []); first = true; v_ = false; x_ = y_ = NaN; } // TODO rather than special-case polygons, simply handle them separately. // Ideally, coincident intersection points should be jittered to avoid // clipping issues. function lineEnd() { if (segments) { linePoint(x__, y__); if (v__ && v_) bufferStream.rejoin(); segments.push(bufferStream.result()); } clipStream.point = point; if (v_) activeStream.lineEnd(); } function linePoint(x, y) { var v = visible(x, y); if (polygon) ring.push([x, y]); if (first) { x__ = x, y__ = y, v__ = v; first = false; if (v) { activeStream.lineStart(); activeStream.point(x, y); } } else { if (v && v_) activeStream.point(x, y); else { var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))], b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))]; if (clipLine(a, b, x0, y0, x1, y1)) { if (!v_) { activeStream.lineStart(); activeStream.point(a[0], a[1]); } activeStream.point(b[0], b[1]); if (!v) activeStream.lineEnd(); clean = false; } else if (v) { activeStream.lineStart(); activeStream.point(x, y); clean = false; } } } x_ = x, y_ = y, v_ = v; } return clipStream; }; } var sum$1 = adder(); function polygonContains(polygon, point) { var lambda = point[0], phi = point[1], normal = [sin(lambda), -cos(lambda), 0], angle = 0, winding = 0; sum$1.reset(); for (var i = 0, n = polygon.length; i < n; ++i) { if (!(m = (ring = polygon[i]).length)) continue; var ring, m, point0 = ring[m - 1], lambda0 = point0[0], phi0 = point0[1] / 2 + quarterPi, sinPhi0 = sin(phi0), cosPhi0 = cos(phi0); for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) { var point1 = ring[j], lambda1 = point1[0], phi1 = point1[1] / 2 + quarterPi, sinPhi1 = sin(phi1), cosPhi1 = cos(phi1), delta = lambda1 - lambda0, sign = delta >= 0 ? 1 : -1, absDelta = sign * delta, antimeridian = absDelta > pi, k = sinPhi0 * sinPhi1; sum$1.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta))); angle += antimeridian ? delta + sign * tau : delta; // Are the longitudes either side of the point’s meridian (lambda), // and are the latitudes smaller than the parallel (phi)? if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) { var arc = cartesianCross(cartesian(point0), cartesian(point1)); cartesianNormalizeInPlace(arc); var intersection = cartesianCross(normal, arc); cartesianNormalizeInPlace(intersection); var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]); if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) { winding += antimeridian ^ delta >= 0 ? 1 : -1; } } } } // First, determine whether the South pole is inside or outside: // // It is inside if: // * the polygon winds around it in a clockwise direction. // * the polygon does not (cumulatively) wind around it, but has a negative // (counter-clockwise) area. // // Second, count the (signed) number of times a segment crosses a lambda // from the point to the South pole. If it is zero, then the point is the // same side as the South pole. return (angle < -epsilon || angle < epsilon && sum$1 < -epsilon) ^ (winding & 1); } var lengthSum = adder(); var lambda0$2; var sinPhi0$1; var cosPhi0$1; var lengthStream = { sphere: noop, point: noop, lineStart: lengthLineStart, lineEnd: noop, polygonStart: noop, polygonEnd: noop }; function lengthLineStart() { lengthStream.point = lengthPointFirst; lengthStream.lineEnd = lengthLineEnd; } function lengthLineEnd() { lengthStream.point = lengthStream.lineEnd = noop; } function lengthPointFirst(lambda, phi) { lambda *= radians, phi *= radians; lambda0$2 = lambda, sinPhi0$1 = sin(phi), cosPhi0$1 = cos(phi); lengthStream.point = lengthPoint; } function lengthPoint(lambda, phi) { lambda *= radians, phi *= radians; var sinPhi = sin(phi), cosPhi = cos(phi), delta = abs(lambda - lambda0$2), cosDelta = cos(delta), sinDelta = sin(delta), x = cosPhi * sinDelta, y = cosPhi0$1 * sinPhi - sinPhi0$1 * cosPhi * cosDelta, z = sinPhi0$1 * sinPhi + cosPhi0$1 * cosPhi * cosDelta; lengthSum.add(atan2(sqrt(x * x + y * y), z)); lambda0$2 = lambda, sinPhi0$1 = sinPhi, cosPhi0$1 = cosPhi; } function identity$1(x) { return x; } var areaSum$1 = adder(); var areaRingSum$1 = adder(); var x00; var y00; var x0$1; var y0$1; var areaStream$1 = { point: noop, lineStart: noop, lineEnd: noop, polygonStart: function() { areaStream$1.lineStart = areaRingStart$1; areaStream$1.lineEnd = areaRingEnd$1; }, polygonEnd: function() { areaStream$1.lineStart = areaStream$1.lineEnd = areaStream$1.point = noop; areaSum$1.add(abs(areaRingSum$1)); areaRingSum$1.reset(); }, result: function() { var area = areaSum$1 / 2; areaSum$1.reset(); return area; } }; function areaRingStart$1() { areaStream$1.point = areaPointFirst$1; } function areaPointFirst$1(x, y) { areaStream$1.point = areaPoint$1; x00 = x0$1 = x, y00 = y0$1 = y; } function areaPoint$1(x, y) { areaRingSum$1.add(y0$1 * x - x0$1 * y); x0$1 = x, y0$1 = y; } function areaRingEnd$1() { areaPoint$1(x00, y00); } var x0$2 = Infinity; var y0$2 = x0$2; var x1 = -x0$2; var y1 = x1; var boundsStream$1 = { point: boundsPoint$1, lineStart: noop, lineEnd: noop, polygonStart: noop, polygonEnd: noop, result: function() { var bounds = [[x0$2, y0$2], [x1, y1]]; x1 = y1 = -(y0$2 = x0$2 = Infinity); return bounds; } }; function boundsPoint$1(x, y) { if (x < x0$2) x0$2 = x; if (x > x1) x1 = x; if (y < y0$2) y0$2 = y; if (y > y1) y1 = y; } var X0$1 = 0; var Y0$1 = 0; var Z0$1 = 0; var X1$1 = 0; var Y1$1 = 0; var Z1$1 = 0; var X2$1 = 0; var Y2$1 = 0; var Z2$1 = 0; var x00$1; var y00$1; var x0$3; var y0$3; var centroidStream$1 = { point: centroidPoint$1, lineStart: centroidLineStart$1, lineEnd: centroidLineEnd$1, polygonStart: function() { centroidStream$1.lineStart = centroidRingStart$1; centroidStream$1.lineEnd = centroidRingEnd$1; }, polygonEnd: function() { centroidStream$1.point = centroidPoint$1; centroidStream$1.lineStart = centroidLineStart$1; centroidStream$1.lineEnd = centroidLineEnd$1; }, result: function() { var centroid = Z2$1 ? [X2$1 / Z2$1, Y2$1 / Z2$1] : Z1$1 ? [X1$1 / Z1$1, Y1$1 / Z1$1] : Z0$1 ? [X0$1 / Z0$1, Y0$1 / Z0$1] : [NaN, NaN]; X0$1 = Y0$1 = Z0$1 = X1$1 = Y1$1 = Z1$1 = X2$1 = Y2$1 = Z2$1 = 0; return centroid; } }; function centroidPoint$1(x, y) { X0$1 += x; Y0$1 += y; ++Z0$1; } function centroidLineStart$1() { centroidStream$1.point = centroidPointFirstLine; } function centroidPointFirstLine(x, y) { centroidStream$1.point = centroidPointLine; centroidPoint$1(x0$3 = x, y0$3 = y); } function centroidPointLine(x, y) { var dx = x - x0$3, dy = y - y0$3, z = sqrt(dx * dx + dy * dy); X1$1 += z * (x0$3 + x) / 2; Y1$1 += z * (y0$3 + y) / 2; Z1$1 += z; centroidPoint$1(x0$3 = x, y0$3 = y); } function centroidLineEnd$1() { centroidStream$1.point = centroidPoint$1; } function centroidRingStart$1() { centroidStream$1.point = centroidPointFirstRing; } function centroidRingEnd$1() { centroidPointRing(x00$1, y00$1); } function centroidPointFirstRing(x, y) { centroidStream$1.point = centroidPointRing; centroidPoint$1(x00$1 = x0$3 = x, y00$1 = y0$3 = y); } function centroidPointRing(x, y) { var dx = x - x0$3, dy = y - y0$3, z = sqrt(dx * dx + dy * dy); X1$1 += z * (x0$3 + x) / 2; Y1$1 += z * (y0$3 + y) / 2; Z1$1 += z; z = y0$3 * x - x0$3 * y; X2$1 += z * (x0$3 + x); Y2$1 += z * (y0$3 + y); Z2$1 += z * 3; centroidPoint$1(x0$3 = x, y0$3 = y); } function PathContext(context) { this._context = context; } PathContext.prototype = { _radius: 4.5, pointRadius: function(_) { return this._radius = _, this; }, polygonStart: function() { this._line = 0; }, polygonEnd: function() { this._line = NaN; }, lineStart: function() { this._point = 0; }, lineEnd: function() { if (this._line === 0) this._context.closePath(); this._point = NaN; }, point: function(x, y) { switch (this._point) { case 0: { this._context.moveTo(x, y); this._point = 1; break; } case 1: { this._context.lineTo(x, y); break; } default: { this._context.moveTo(x + this._radius, y); this._context.arc(x, y, this._radius, 0, tau); break; } } }, result: noop }; var lengthSum$1 = adder(); var lengthRing; var x00$2; var y00$2; var x0$4; var y0$4; var lengthStream$1 = { point: noop, lineStart: function() { lengthStream$1.point = lengthPointFirst$1; }, lineEnd: function() { if (lengthRing) lengthPoint$1(x00$2, y00$2); lengthStream$1.point = noop; }, polygonStart: function() { lengthRing = true; }, polygonEnd: function() { lengthRing = null; }, result: function() { var length = +lengthSum$1; lengthSum$1.reset(); return length; } }; function lengthPointFirst$1(x, y) { lengthStream$1.point = lengthPoint$1; x00$2 = x0$4 = x, y00$2 = y0$4 = y; } function lengthPoint$1(x, y) { x0$4 -= x, y0$4 -= y; lengthSum$1.add(sqrt(x0$4 * x0$4 + y0$4 * y0$4)); x0$4 = x, y0$4 = y; } function PathString() { this._string = []; } PathString.prototype = { _circle: circle$1(4.5), pointRadius: function(_) { return this._circle = circle$1(_), this; }, polygonStart: function() { this._line = 0; }, polygonEnd: function() { this._line = NaN; }, lineStart: function() { this._point = 0; }, lineEnd: function() { if (this._line === 0) this._string.push("Z"); this._point = NaN; }, point: function(x, y) { switch (this._point) { case 0: { this._string.push("M", x, ",", y); this._point = 1; break; } case 1: { this._string.push("L", x, ",", y); break; } default: { this._string.push("M", x, ",", y, this._circle); break; } } }, result: function() { if (this._string.length) { var result = this._string.join(""); this._string = []; return result; } } }; function circle$1(radius) { return "m0," + radius + "a" + radius + "," + radius + " 0 1,1 0," + -2 * radius + "a" + radius + "," + radius + " 0 1,1 0," + 2 * radius + "z"; } function geoPath(projection, context) { var pointRadius = 4.5, projectionStream, contextStream; function path(object) { if (object) { if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments)); geoStream(object, projectionStream(contextStream)); } return contextStream.result(); } path.area = function(object) { geoStream(object, projectionStream(areaStream$1)); return areaStream$1.result(); }; path.measure = function(object) { geoStream(object, projectionStream(lengthStream$1)); return lengthStream$1.result(); }; path.bounds = function(object) { geoStream(object, projectionStream(boundsStream$1)); return boundsStream$1.result(); }; path.centroid = function(object) { geoStream(object, projectionStream(centroidStream$1)); return centroidStream$1.result(); }; path.projection = function(_) { return arguments.length ? (projectionStream = _ == null ? (projection = null, identity$1) : (projection = _).stream, path) : projection; }; path.context = function(_) { if (!arguments.length) return context; contextStream = _ == null ? (context = null, new PathString) : new PathContext(context = _); if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius); return path; }; path.pointRadius = function(_) { if (!arguments.length) return pointRadius; pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_); return path; }; return path.projection(projection).context(context); } function clip(pointVisible, clipLine, interpolate, start) { return function(rotate, sink) { var line = clipLine(sink), rotatedStart = rotate.invert(start[0], start[1]), ringBuffer = clipBuffer(), ringSink = clipLine(ringBuffer), polygonStarted = false, polygon, segments, ring; var clip = { point: point, lineStart: lineStart, lineEnd: lineEnd, polygonStart: function() { clip.point = pointRing; clip.lineStart = ringStart; clip.lineEnd = ringEnd; segments = []; polygon = []; }, polygonEnd: function() { clip.point = point; clip.lineStart = lineStart; clip.lineEnd = lineEnd; segments = merge(segments); var startInside = polygonContains(polygon, rotatedStart); if (segments.length) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; clipPolygon(segments, compareIntersection, startInside, interpolate, sink); } else if (startInside) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; sink.lineStart(); interpolate(null, null, 1, sink); sink.lineEnd(); } if (polygonStarted) sink.polygonEnd(), polygonStarted = false; segments = polygon = null; }, sphere: function() { sink.polygonStart(); sink.lineStart(); interpolate(null, null, 1, sink); sink.lineEnd(); sink.polygonEnd(); } }; function point(lambda, phi) { var point = rotate(lambda, phi); if (pointVisible(lambda = point[0], phi = point[1])) sink.point(lambda, phi); } function pointLine(lambda, phi) { var point = rotate(lambda, phi); line.point(point[0], point[1]); } function lineStart() { clip.point = pointLine; line.lineStart(); } function lineEnd() { clip.point = point; line.lineEnd(); } function pointRing(lambda, phi) { ring.push([lambda, phi]); var point = rotate(lambda, phi); ringSink.point(point[0], point[1]); } function ringStart() { ringSink.lineStart(); ring = []; } function ringEnd() { pointRing(ring[0][0], ring[0][1]); ringSink.lineEnd(); var clean = ringSink.clean(), ringSegments = ringBuffer.result(), i, n = ringSegments.length, m, segment, point; ring.pop(); polygon.push(ring); ring = null; if (!n) return; // No intersections. if (clean & 1) { segment = ringSegments[0]; if ((m = segment.length - 1) > 0) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; sink.lineStart(); for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]); sink.lineEnd(); } return; } // Rejoin connected segments. // TODO reuse ringBuffer.rejoin()? if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift())); segments.push(ringSegments.filter(validSegment)); } return clip; }; } function validSegment(segment) { return segment.length > 1; } // Intersections are sorted along the clip edge. For both antimeridian cutting // and circle clipping, the same comparison is used. function compareIntersection(a, b) { return ((a = a.x)[0] < 0 ? a[1] - halfPi - epsilon : halfPi - a[1]) - ((b = b.x)[0] < 0 ? b[1] - halfPi - epsilon : halfPi - b[1]); } var clipAntimeridian = clip( function() { return true; }, clipAntimeridianLine, clipAntimeridianInterpolate, [-pi, -halfPi] ); // Takes a line and cuts into visible segments. Return values: 0 - there were // intersections or the line was empty; 1 - no intersections; 2 - there were // intersections, and the first and last segments should be rejoined. function clipAntimeridianLine(stream) { var lambda0 = NaN, phi0 = NaN, sign0 = NaN, clean; // no intersections return { lineStart: function() { stream.lineStart(); clean = 1; }, point: function(lambda1, phi1) { var sign1 = lambda1 > 0 ? pi : -pi, delta = abs(lambda1 - lambda0); if (abs(delta - pi) < epsilon) { // line crosses a pole stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi : -halfPi); stream.point(sign0, phi0); stream.lineEnd(); stream.lineStart(); stream.point(sign1, phi0); stream.point(lambda1, phi0); clean = 0; } else if (sign0 !== sign1 && delta >= pi) { // line crosses antimeridian if (abs(lambda0 - sign0) < epsilon) lambda0 -= sign0 * epsilon; // handle degeneracies if (abs(lambda1 - sign1) < epsilon) lambda1 -= sign1 * epsilon; phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1); stream.point(sign0, phi0); stream.lineEnd(); stream.lineStart(); stream.point(sign1, phi0); clean = 0; } stream.point(lambda0 = lambda1, phi0 = phi1); sign0 = sign1; }, lineEnd: function() { stream.lineEnd(); lambda0 = phi0 = NaN; }, clean: function() { return 2 - clean; // if intersections, rejoin first and last segments } }; } function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) { var cosPhi0, cosPhi1, sinLambda0Lambda1 = sin(lambda0 - lambda1); return abs(sinLambda0Lambda1) > epsilon ? atan((sin(phi0) * (cosPhi1 = cos(phi1)) * sin(lambda1) - sin(phi1) * (cosPhi0 = cos(phi0)) * sin(lambda0)) / (cosPhi0 * cosPhi1 * sinLambda0Lambda1)) : (phi0 + phi1) / 2; } function clipAntimeridianInterpolate(from, to, direction, stream) { var phi; if (from == null) { phi = direction * halfPi; stream.point(-pi, phi); stream.point(0, phi); stream.point(pi, phi); stream.point(pi, 0); stream.point(pi, -phi); stream.point(0, -phi); stream.point(-pi, -phi); stream.point(-pi, 0); stream.point(-pi, phi); } else if (abs(from[0] - to[0]) > epsilon) { var lambda = from[0] < to[0] ? pi : -pi; phi = direction * lambda / 2; stream.point(-lambda, phi); stream.point(0, phi); stream.point(lambda, phi); } else { stream.point(to[0], to[1]); } } function clipCircle(radius, delta) { var cr = cos(radius), smallRadius = cr > 0, notHemisphere = abs(cr) > epsilon; // TODO optimise for this common case function interpolate(from, to, direction, stream) { circleStream(stream, radius, delta, direction, from, to); } function visible(lambda, phi) { return cos(lambda) * cos(phi) > cr; } // Takes a line and cuts into visible segments. Return values used for polygon // clipping: 0 - there were intersections or the line was empty; 1 - no // intersections 2 - there were intersections, and the first and last segments // should be rejoined. function clipLine(stream) { var point0, // previous point c0, // code for previous point v0, // visibility of previous point v00, // visibility of first point clean; // no intersections return { lineStart: function() { v00 = v0 = false; clean = 1; }, point: function(lambda, phi) { var point1 = [lambda, phi], point2, v = visible(lambda, phi), c = smallRadius ? v ? 0 : code(lambda, phi) : v ? code(lambda + (lambda < 0 ? pi : -pi), phi) : 0; if (!point0 && (v00 = v0 = v)) stream.lineStart(); // Handle degeneracies. // TODO ignore if not clipping polygons. if (v !== v0) { point2 = intersect(point0, point1); if (pointEqual(point0, point2) || pointEqual(point1, point2)) { point1[0] += epsilon; point1[1] += epsilon; v = visible(point1[0], point1[1]); } } if (v !== v0) { clean = 0; if (v) { // outside going in stream.lineStart(); point2 = intersect(point1, point0); stream.point(point2[0], point2[1]); } else { // inside going out point2 = intersect(point0, point1); stream.point(point2[0], point2[1]); stream.lineEnd(); } point0 = point2; } else if (notHemisphere && point0 && smallRadius ^ v) { var t; // If the codes for two points are different, or are both zero, // and there this segment intersects with the small circle. if (!(c & c0) && (t = intersect(point1, point0, true))) { clean = 0; if (smallRadius) { stream.lineStart(); stream.point(t[0][0], t[0][1]); stream.point(t[1][0], t[1][1]); stream.lineEnd(); } else { stream.point(t[1][0], t[1][1]); stream.lineEnd(); stream.lineStart(); stream.point(t[0][0], t[0][1]); } } } if (v && (!point0 || !pointEqual(point0, point1))) { stream.point(point1[0], point1[1]); } point0 = point1, v0 = v, c0 = c; }, lineEnd: function() { if (v0) stream.lineEnd(); point0 = null; }, // Rejoin first and last segments if there were intersections and the first // and last points were visible. clean: function() { return clean | ((v00 && v0) << 1); } }; } // Intersects the great circle between a and b with the clip circle. function intersect(a, b, two) { var pa = cartesian(a), pb = cartesian(b); // We have two planes, n1.p = d1 and n2.p = d2. // Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2). var n1 = [1, 0, 0], // normal