UNPKG

tofu.js

Version:

a helper three.js library for building UC-AR

215 lines (192 loc) 5.21 kB
/** * https://github.com/gre/bezier-easing * BezierEasing - use bezier curve for transition easing function * by Gaëtan Renaudeau 2014 - 2015 – MIT License */ const NEWTON_ITERATIONS = 4; const NEWTON_MIN_SLOPE = 0.001; const SUBDIVISION_PRECISION = 0.0000001; const SUBDIVISION_MAX_ITERATIONS = 10; const kSplineTableSize = 11; const kSampleStepSize = 1.0 / (kSplineTableSize - 1.0); const float32ArraySupported = typeof Float32Array === 'function'; /* eslint new-cap: 0 */ /** * 公因式A * * @param {number} aA1 控制分量 * @param {number} aA2 控制分量 * @return {number} 整个公式中的A公因式的值 */ function A(aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; } /** * 公因式B * * @param {number} aA1 控制分量1 * @param {number} aA2 控制分量2 * @return {number} 整个公式中的B公因式的值 */ function B(aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; } /** * 公因式C * * @param {number} aA1 控制分量1 * @param {number} aA2 控制分量2 * @return {number} 整个公式中的C公因式的值 */ function C(aA1) { return 3.0 * aA1; } /** * 获取aT处的值 * * @param {number} aT 三次贝塞尔曲线的t自变量 * @param {number} aA1 控制分量1 * @param {number} aA2 控制分量2 * @return {number} 三次贝塞尔公式的因变量 */ function calcBezier(aT, aA1, aA2) { return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; } /** * 获取aT处的斜率 * @param {number} aT 三次贝塞尔曲线的t自变量 * @param {number} aA1 控制分量1 * @param {number} aA2 控制分量2 * @return {number} 三次贝塞尔公式的导数 */ function getSlope(aT, aA1, aA2) { return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); } /** * * @param {number} aX x * @param {number} aA a * @param {number} aB b * @param {number} mX1 min x * @param {number} mX2 max x * @return {number} 二分法猜测t的值 */ function binarySubdivide(aX, aA, aB, mX1, mX2) { let currentX; let currentT; let i = 0; do { currentT = aA + (aB - aA) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - aX; if (currentX > 0.0) { aB = currentT; } else { aA = currentT; } } while ( Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS ); return currentT; } /** * 牛顿迭代算法,进一步的获取精确的T值 * @param {number} aX x * @param {number} aGuessT guess t * @param {number} mX1 min x * @param {number} mX2 max x * @return {number} 获取更精确的T值 */ function newtonRaphsonIterate(aX, aGuessT, mX1, mX2) { for (let i = 0; i < NEWTON_ITERATIONS; ++i) { const currentSlope = getSlope(aGuessT, mX1, mX2); if (currentSlope === 0.0) { return aGuessT; } const currentX = calcBezier(aGuessT, mX1, mX2) - aX; aGuessT -= currentX / currentSlope; } return aGuessT; } /** * cubic-bezier曲线的两个控制点,默认起始点为 0,结束点为 1 * * @class * @param {number} mX1 控制点1的x分量 * @param {number} mY1 控制点1的y分量 * @param {number} mX2 控制点2的x分量 * @param {number} mY2 控制点2的y分量 */ function BezierEasing(mX1, mY1, mX2, mY2) { if (!(mX1 >= 0 && mX1 <= 1 && mX2 >= 0 && mX2 <= 1)) { throw new Error('bezier x values must be in [0, 1] range'); } this.mX1 = mX1; this.mY1 = mY1; this.mX2 = mX2; this.mY2 = mY2; this.sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize); this._preCompute(); } BezierEasing.prototype._preCompute = function() { // Precompute samples table if (this.mX1 !== this.mY1 || this.mX2 !== this.mY2) { for (let i = 0; i < kSplineTableSize; ++i) { this.sampleValues[i] = calcBezier( i * kSampleStepSize, this.mX1, this.mX2 ); } } }; BezierEasing.prototype._getTForX = function(aX) { let intervalStart = 0.0; let currentSample = 1; const lastSample = kSplineTableSize - 1; for ( ; currentSample !== lastSample && this.sampleValues[currentSample] <= aX; ++currentSample ) { intervalStart += kSampleStepSize; } --currentSample; // Interpolate to provide an initial guess for t const dist = (aX - this.sampleValues[currentSample]) / (this.sampleValues[currentSample + 1] - this.sampleValues[currentSample]); const guessForT = intervalStart + dist * kSampleStepSize; const initialSlope = getSlope(guessForT, this.mX1, this.mX2); if (initialSlope >= NEWTON_MIN_SLOPE) { return newtonRaphsonIterate(aX, guessForT, this.mX1, this.mX2); } else if (initialSlope === 0.0) { return guessForT; } return binarySubdivide( aX, intervalStart, intervalStart + kSampleStepSize, this.mX1, this.mX2 ); }; /** * 通过x轴近似获取y的值 * * @param {number} x x轴的偏移量 * @return {number} 与输入值x对应的y值 */ BezierEasing.prototype.get = function(x) { if (this.mX1 === this.mY1 && this.mX2 === this.mY2) return x; if (x === 0) { return 0; } if (x === 1) { return 1; } return calcBezier(this._getTForX(x), this.mY1, this.mY2); }; export { BezierEasing };