UNPKG

tmaiplugin

Version:

TrainingMaster AIGC Component

139 lines (138 loc) 7.35 kB
"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __importDefault = (this && this.__importDefault) || function (mod) { return (mod && mod.__esModule) ? mod : { "default": mod }; }; Object.defineProperty(exports, "__esModule", { value: true }); exports.FaqPlugin = void 0; const stringutil_1 = require("./util/stringutil"); const aipluginbase_1 = __importDefault(require("./aipluginbase")); const FAQ_ROLE_DEFINE = [ '你是一位精通各行业的培训专家,擅长根据文档内容提取重点要点,形成培训问题及答案', '你是一位程序设计专家,特别擅长数据分析,内容组织并进行结构化设计,形成Json格式的数据' ]; const PROMPT_LINK = [ `根据以下内容提炼{{COUNT}}道问题、答案和答案的关键词。要求如下: 1、问题偏口语化,问题需要与所给的资料相关,绝不能问超出所给资料的范围;所提问题需要准确、完整、清晰,绝不能有歧义;意思相近的问题不要重复给出; 2、对应的答案必须要在资料中能找到,绝对不能给出在资料里没有的答案,答案的关键词必须完整在所给的答案中出现,绝不能给出不在答案里的关键词; 3、生成问题的时候,请出具有代表性的问题,对于一些无关紧要的问题可以忽略。特别注意资料中关于数字、参数、特点等关键信息的提取,在给出的问题中尽可能覆盖; 4、输出结果包括:问题、答案、答案关键词; 5、如果无法从内容中提炼任何问题,仅需返回"NO"。 内容如下:""" {{CONTENT}} """`, `请将内容按照[{"question":"提问内容","answer":"答案内容","keywords":["关键词1","关键词2"]}]的标准Json数组结构输出。 内容如下:""" {{CONTENT}} """` ]; /** * Faq问题的提取器插件 */ class FaqPlugin extends aipluginbase_1.default { /** * 从指定的文本内容中生成相关的问答 * @param {*} content * @param {*} count * @param {*} axiosOption * @returns */ //并在答案末尾处必须给出答案内容中的关键词 execute(params) { return __awaiter(this, void 0, void 0, function* () { let { content, count, sectionlength, axios } = params; sectionlength = sectionlength || 1024; if (!this.gptInstance) return null; let arrContent = (0, stringutil_1.splitLongText)(content, sectionlength); ///每一句话需要产生的题目 let questions4EverySentense = count / arrContent.length; //Math.ceil(arrContent.length / 20); let faqs = [], gotted = 0; while (arrContent.length > 0 && gotted < count) { questions4EverySentense = (count - gotted) / arrContent.length; ////每次最多送MESSAGE_LENGTH句话给openai let itemCount = Math.min(Math.ceil(questions4EverySentense), count - gotted); let subarray = [ { role: 'system', content: FAQ_ROLE_DEFINE[0] }, { role: 'user', content: PROMPT_LINK[0].replace('{{COUNT}}', itemCount).replace('{{CONTENT}}', arrContent.slice(0, 1)[0]) }, ]; console.log('Faq Question Pick Prompt:', subarray); let result = yield this.gptInstance.chatRequest(subarray, { replyCounts: 1 }, axios); ///如果请求发生了网络错误(不是内容合规问题),则再重试一次,如果任然有错则放弃 if (!result.successed && result.error != 'content_filter') { console.log('network error,retry onemore time'); result = yield this.gptInstance.chatRequest(subarray, { replyCounts: 1 }, axios); } if (result.successed && result.message) { let msgs = yield this.pickUpFaqContent(result.message); if (msgs.length) { ///对外发送检出问答题的信号 this.emit('parseout', { type: 'qa', items: msgs }); gotted += msgs.length; //result.message.length; faqs = faqs.concat(msgs); } } ////删除已经处理的文本 arrContent.splice(0, 1); } arrContent = []; /// 释放内存 ///发出信号,解析完毕 this.emit('parseover', { type: 'qa', items: faqs }); return { successed: true, message: faqs.slice(0, count) }; }); } /** * 解析Faq返回的问题 * @param {*} messages * @returns */ pickUpFaqContent(messages) { var _a, _b; return __awaiter(this, void 0, void 0, function* () { if (!this.gptInstance || !((_b = (_a = messages[0]) === null || _a === void 0 ? void 0 : _a.message) === null || _b === void 0 ? void 0 : _b.content)) return []; let answerString = messages[0].message.content.trim().replace(/\t|\n|\v|\r|\f/g, ''); if (answerString.includes('NO')) return []; let orgJsonPrompt = [ { role: 'system', content: FAQ_ROLE_DEFINE[1] }, { role: 'user', content: PROMPT_LINK[1].replace('{{CONTENT}}', answerString) } ]; console.log('orgJsonPrompt', orgJsonPrompt); let fixedJsonResult = yield this.gptInstance.chatRequest(orgJsonPrompt, { replyCounts: 1 }, {}); if (fixedJsonResult.successed) { answerString = fixedJsonResult.message[0].message.content.trim().replace(/\t|\n|\v|\r|\f/g, ''); } let jsonObj = fixedJsonResult.successed ? (0, stringutil_1.fixedJsonString)(answerString) : []; if (!jsonObj.length) return []; try { jsonObj.map((item) => { let realKeyword = []; let keywords = (item.keywords + '').split(','); let answer = item.answer || ''; item.question = item.question.replace(/^问题\s*\d*\s*(:|:)*/, ''); for (const k of keywords) { if (k && answer.indexOf(k) >= 0) realKeyword.push(k); } item.keywords = realKeyword; return item; }); return jsonObj; } catch (err) { console.log('JSON error', err); return []; } }); } } exports.FaqPlugin = FaqPlugin;