UNPKG

threejs-fbxloader

Version:

loader for *.fbx models

1,497 lines (914 loc) 122 kB
/** * @author Kyle-Larson https://github.com/Kyle-Larson * @author Takahiro https://github.com/takahirox * @author Lewy Blue https://github.com/looeee * * Loader loads FBX file and generates Group representing FBX scene. * Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format * Versions lower than this may load but will probably have errors * * Needs Support: * Morph normals / blend shape normals * Animation tracks for morph targets * * Euler rotation order * * FBX format references: * https://wiki.blender.org/index.php/User:Mont29/Foundation/FBX_File_Structure * http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html (C++ SDK reference) * * Binary format specification: * https://code.blender.org/2013/08/fbx-binary-file-format-specification/ */ module.exports = function(THREE){ ( function () { THREE.FBXLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; Object.assign( THREE.FBXLoader.prototype, { crossOrigin: 'anonymous', load: function ( url, onLoad, onProgress, onError ) { var self = this; var resourceDirectory = THREE.LoaderUtils.extractUrlBase( url ); var loader = new THREE.FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { try { var scene = self.parse( buffer, resourceDirectory ); onLoad( scene ); } catch ( error ) { setTimeout( function () { if ( onError ) onError( error ); self.manager.itemError( url ); }, 0 ); } }, onProgress, onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; return this; }, parse: function ( FBXBuffer, resourceDirectory ) { var FBXTree; if ( isFbxFormatBinary( FBXBuffer ) ) { FBXTree = new BinaryParser().parse( FBXBuffer ); } else { var FBXText = convertArrayBufferToString( FBXBuffer ); if ( ! isFbxFormatASCII( FBXText ) ) { throw new Error( 'THREE.FBXLoader: Unknown format.' ); } if ( getFbxVersion( FBXText ) < 7000 ) { throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) ); } FBXTree = new TextParser().parse( FBXText ); } // console.log( FBXTree ); var textureLoader = new THREE.TextureLoader( this.manager ).setPath( resourceDirectory ).setCrossOrigin( this.crossOrigin ); var connections = parseConnections( FBXTree ); var images = parseImages( FBXTree ); var textures = parseTextures( FBXTree, textureLoader, images, connections ); var materials = parseMaterials( FBXTree, textures, connections ); var deformers = parseDeformers( FBXTree, connections ); var geometryMap = parseGeometries( FBXTree, connections, deformers ); var sceneGraph = parseScene( FBXTree, connections, deformers, geometryMap, materials ); return sceneGraph; } } ); // Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry ) // and details the connection type function parseConnections( FBXTree ) { var connectionMap = new Map(); if ( 'Connections' in FBXTree ) { var rawConnections = FBXTree.Connections.connections; rawConnections.forEach( function ( rawConnection ) { var fromID = rawConnection[ 0 ]; var toID = rawConnection[ 1 ]; var relationship = rawConnection[ 2 ]; if ( ! connectionMap.has( fromID ) ) { connectionMap.set( fromID, { parents: [], children: [] } ); } var parentRelationship = { ID: toID, relationship: relationship }; connectionMap.get( fromID ).parents.push( parentRelationship ); if ( ! connectionMap.has( toID ) ) { connectionMap.set( toID, { parents: [], children: [] } ); } var childRelationship = { ID: fromID, relationship: relationship }; connectionMap.get( toID ).children.push( childRelationship ); } ); } return connectionMap; } // Parse FBXTree.Objects.Video for embedded image data // These images are connected to textures in FBXTree.Objects.Textures // via FBXTree.Connections. function parseImages( FBXTree ) { var images = {}; var blobs = {}; if ( 'Video' in FBXTree.Objects ) { var videoNodes = FBXTree.Objects.Video; for ( var nodeID in videoNodes ) { var videoNode = videoNodes[ nodeID ]; var id = parseInt( nodeID ); images[ id ] = videoNode.RelativeFilename || videoNode.Filename; // raw image data is in videoNode.Content if ( 'Content' in videoNode ) { var arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 ); var base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' ); if ( arrayBufferContent || base64Content ) { var image = parseImage( videoNodes[ nodeID ] ); blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image; } } } } for ( var id in images ) { var filename = images[ id ]; if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ]; else images[ id ] = images[ id ].split( '\\' ).pop(); } return images; } // Parse embedded image data in FBXTree.Video.Content function parseImage( videoNode ) { var content = videoNode.Content; var fileName = videoNode.RelativeFilename || videoNode.Filename; var extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase(); var type; switch ( extension ) { case 'bmp': type = 'image/bmp'; break; case 'jpg': case 'jpeg': type = 'image/jpeg'; break; case 'png': type = 'image/png'; break; case 'tif': type = 'image/tiff'; break; case 'tga': if ( typeof THREE.TGALoader !== 'function' ) { console.warn( 'FBXLoader: THREE.TGALoader is required to load TGA textures' ); return; } else { if ( THREE.Loader.Handlers.get( '.tga' ) === null ) { THREE.Loader.Handlers.add( /\.tga$/i, new THREE.TGALoader() ); } type = 'image/tga'; break; } default: console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' ); return; } if ( typeof content === 'string' ) { // ASCII format return 'data:' + type + ';base64,' + content; } else { // Binary Format var array = new Uint8Array( content ); return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) ); } } // Parse nodes in FBXTree.Objects.Texture // These contain details such as UV scaling, cropping, rotation etc and are connected // to images in FBXTree.Objects.Video function parseTextures( FBXTree, loader, images, connections ) { var textureMap = new Map(); if ( 'Texture' in FBXTree.Objects ) { var textureNodes = FBXTree.Objects.Texture; for ( var nodeID in textureNodes ) { var texture = parseTexture( textureNodes[ nodeID ], loader, images, connections ); textureMap.set( parseInt( nodeID ), texture ); } } return textureMap; } // Parse individual node in FBXTree.Objects.Texture function parseTexture( textureNode, loader, images, connections ) { var texture = loadTexture( textureNode, loader, images, connections ); texture.ID = textureNode.id; texture.name = textureNode.attrName; var wrapModeU = textureNode.WrapModeU; var wrapModeV = textureNode.WrapModeV; var valueU = wrapModeU !== undefined ? wrapModeU.value : 0; var valueV = wrapModeV !== undefined ? wrapModeV.value : 0; // http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a // 0: repeat(default), 1: clamp texture.wrapS = valueU === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; if ( 'Scaling' in textureNode ) { var values = textureNode.Scaling.value; texture.repeat.x = values[ 0 ]; texture.repeat.y = values[ 1 ]; } return texture; } // load a texture specified as a blob or data URI, or via an external URL using THREE.TextureLoader function loadTexture( textureNode, loader, images, connections ) { var fileName; var currentPath = loader.path; var children = connections.get( textureNode.id ).children; if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) { fileName = images[ children[ 0 ].ID ]; if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) { loader.setPath( undefined ); } } var texture; if ( textureNode.FileName.slice( - 3 ).toLowerCase() === 'tga' ) { texture = THREE.Loader.Handlers.get( '.tga' ).load( fileName ); } else { texture = loader.load( fileName ); } loader.setPath( currentPath ); return texture; } // Parse nodes in FBXTree.Objects.Material function parseMaterials( FBXTree, textureMap, connections ) { var materialMap = new Map(); if ( 'Material' in FBXTree.Objects ) { var materialNodes = FBXTree.Objects.Material; for ( var nodeID in materialNodes ) { var material = parseMaterial( FBXTree, materialNodes[ nodeID ], textureMap, connections ); if ( material !== null ) materialMap.set( parseInt( nodeID ), material ); } } return materialMap; } // Parse single node in FBXTree.Objects.Material // Materials are connected to texture maps in FBXTree.Objects.Textures // FBX format currently only supports Lambert and Phong shading models function parseMaterial( FBXTree, materialNode, textureMap, connections ) { var ID = materialNode.id; var name = materialNode.attrName; var type = materialNode.ShadingModel; // Case where FBX wraps shading model in property object. if ( typeof type === 'object' ) { type = type.value; } // Ignore unused materials which don't have any connections. if ( ! connections.has( ID ) ) return null; var parameters = parseParameters( FBXTree, materialNode, textureMap, ID, connections ); var material; switch ( type.toLowerCase() ) { case 'phong': material = new THREE.MeshPhongMaterial(); break; case 'lambert': material = new THREE.MeshLambertMaterial(); break; default: console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type ); material = new THREE.MeshPhongMaterial( { color: 0x3300ff } ); break; } material.setValues( parameters ); material.name = name; return material; } // Parse FBX material and return parameters suitable for a three.js material // Also parse the texture map and return any textures associated with the material function parseParameters( FBXTree, properties, textureMap, ID, connections ) { var parameters = {}; if ( properties.BumpFactor ) { parameters.bumpScale = properties.BumpFactor.value; } if ( properties.Diffuse ) { parameters.color = new THREE.Color().fromArray( properties.Diffuse.value ); } else if ( properties.DiffuseColor && properties.DiffuseColor.type === 'Color' ) { // The blender exporter exports diffuse here instead of in properties.Diffuse parameters.color = new THREE.Color().fromArray( properties.DiffuseColor.value ); } if ( properties.DisplacementFactor ) { parameters.displacementScale = properties.DisplacementFactor.value; } if ( properties.Emissive ) { parameters.emissive = new THREE.Color().fromArray( properties.Emissive.value ); } else if ( properties.EmissiveColor && properties.EmissiveColor.type === 'Color' ) { // The blender exporter exports emissive color here instead of in properties.Emissive parameters.emissive = new THREE.Color().fromArray( properties.EmissiveColor.value ); } if ( properties.EmissiveFactor ) { parameters.emissiveIntensity = parseFloat( properties.EmissiveFactor.value ); } if ( properties.Opacity ) { parameters.opacity = parseFloat( properties.Opacity.value ); } if ( parameters.opacity < 1.0 ) { parameters.transparent = true; } if ( properties.ReflectionFactor ) { parameters.reflectivity = properties.ReflectionFactor.value; } if ( properties.Shininess ) { parameters.shininess = properties.Shininess.value; } if ( properties.Specular ) { parameters.specular = new THREE.Color().fromArray( properties.Specular.value ); } else if ( properties.SpecularColor && properties.SpecularColor.type === 'Color' ) { // The blender exporter exports specular color here instead of in properties.Specular parameters.specular = new THREE.Color().fromArray( properties.SpecularColor.value ); } connections.get( ID ).children.forEach( function ( child ) { var type = child.relationship; switch ( type ) { case 'Bump': parameters.bumpMap = textureMap.get( child.ID ); break; case 'DiffuseColor': parameters.map = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'DisplacementColor': parameters.displacementMap = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'EmissiveColor': parameters.emissiveMap = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'NormalMap': parameters.normalMap = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'ReflectionColor': parameters.envMap = getTexture( FBXTree, textureMap, child.ID, connections ); parameters.envMap.mapping = THREE.EquirectangularReflectionMapping; break; case 'SpecularColor': parameters.specularMap = getTexture( FBXTree, textureMap, child.ID, connections ); break; case 'TransparentColor': parameters.alphaMap = getTexture( FBXTree, textureMap, child.ID, connections ); parameters.transparent = true; break; case 'AmbientColor': case 'ShininessExponent': // AKA glossiness map case 'SpecularFactor': // AKA specularLevel case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor default: console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type ); break; } } ); return parameters; } // get a texture from the textureMap for use by a material. function getTexture( FBXTree, textureMap, id, connections ) { // if the texture is a layered texture, just use the first layer and issue a warning if ( 'LayeredTexture' in FBXTree.Objects && id in FBXTree.Objects.LayeredTexture ) { console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' ); id = connections.get( id ).children[ 0 ].ID; } return textureMap.get( id ); } // Parse nodes in FBXTree.Objects.Deformer // Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here // Generates map of Skeleton-like objects for use later when generating and binding skeletons. function parseDeformers( FBXTree, connections ) { var skeletons = {}; var morphTargets = {}; if ( 'Deformer' in FBXTree.Objects ) { var DeformerNodes = FBXTree.Objects.Deformer; for ( var nodeID in DeformerNodes ) { var deformerNode = DeformerNodes[ nodeID ]; var relationships = connections.get( parseInt( nodeID ) ); if ( deformerNode.attrType === 'Skin' ) { var skeleton = parseSkeleton( relationships, DeformerNodes ); skeleton.ID = nodeID; if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' ); skeleton.geometryID = relationships.parents[ 0 ].ID; skeletons[ nodeID ] = skeleton; } else if ( deformerNode.attrType === 'BlendShape' ) { var morphTarget = { id: nodeID, }; morphTarget.rawTargets = parseMorphTargets( relationships, DeformerNodes, connections ); morphTarget.id = nodeID; if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' ); morphTargets[ nodeID ] = morphTarget; } } } return { skeletons: skeletons, morphTargets: morphTargets, }; } // Parse single nodes in FBXTree.Objects.Deformer // The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster' // Each skin node represents a skeleton and each cluster node represents a bone function parseSkeleton( connections, deformerNodes ) { var rawBones = []; connections.children.forEach( function ( child ) { var boneNode = deformerNodes[ child.ID ]; if ( boneNode.attrType !== 'Cluster' ) return; var rawBone = { ID: child.ID, indices: [], weights: [], transform: new THREE.Matrix4().fromArray( boneNode.Transform.a ), transformLink: new THREE.Matrix4().fromArray( boneNode.TransformLink.a ), linkMode: boneNode.Mode, }; if ( 'Indexes' in boneNode ) { rawBone.indices = boneNode.Indexes.a; rawBone.weights = boneNode.Weights.a; } rawBones.push( rawBone ); } ); return { rawBones: rawBones, bones: [] }; } // The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel" function parseMorphTargets( relationships, deformerNodes, connections ) { var rawMorphTargets = []; for ( var i = 0; i < relationships.children.length; i ++ ) { if ( i === 8 ) { console.warn( 'FBXLoader: maximum of 8 morph targets supported. Ignoring additional targets.' ); break; } var child = relationships.children[ i ]; var morphTargetNode = deformerNodes[ child.ID ]; var rawMorphTarget = { name: morphTargetNode.attrName, initialWeight: morphTargetNode.DeformPercent, id: morphTargetNode.id, fullWeights: morphTargetNode.FullWeights.a }; if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return; var targetRelationships = connections.get( parseInt( child.ID ) ); targetRelationships.children.forEach( function ( child ) { if ( child.relationship === undefined ) rawMorphTarget.geoID = child.ID; } ); rawMorphTargets.push( rawMorphTarget ); } return rawMorphTargets; } // Parse nodes in FBXTree.Objects.Geometry function parseGeometries( FBXTree, connections, deformers ) { var geometryMap = new Map(); if ( 'Geometry' in FBXTree.Objects ) { var geoNodes = FBXTree.Objects.Geometry; for ( var nodeID in geoNodes ) { var relationships = connections.get( parseInt( nodeID ) ); var geo = parseGeometry( FBXTree, relationships, geoNodes[ nodeID ], deformers ); geometryMap.set( parseInt( nodeID ), geo ); } } return geometryMap; } // Parse single node in FBXTree.Objects.Geometry function parseGeometry( FBXTree, relationships, geoNode, deformers ) { switch ( geoNode.attrType ) { case 'Mesh': return parseMeshGeometry( FBXTree, relationships, geoNode, deformers ); break; case 'NurbsCurve': return parseNurbsGeometry( geoNode ); break; } } // Parse single node mesh geometry in FBXTree.Objects.Geometry function parseMeshGeometry( FBXTree, relationships, geoNode, deformers ) { var skeletons = deformers.skeletons; var morphTargets = deformers.morphTargets; var modelNodes = relationships.parents.map( function ( parent ) { return FBXTree.Objects.Model[ parent.ID ]; } ); // don't create geometry if it is not associated with any models if ( modelNodes.length === 0 ) return; var skeleton = relationships.children.reduce( function ( skeleton, child ) { if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ]; return skeleton; }, null ); var morphTarget = relationships.children.reduce( function ( morphTarget, child ) { if ( morphTargets[ child.ID ] !== undefined ) morphTarget = morphTargets[ child.ID ]; return morphTarget; }, null ); var preTransform = new THREE.Matrix4(); // TODO: if there is more than one model associated with the geometry, AND the models have // different geometric transforms, then this will cause problems // if ( modelNodes.length > 1 ) { } // For now just assume one model and get the preRotations from that var modelNode = modelNodes[ 0 ]; if ( 'GeometricRotation' in modelNode ) { var array = modelNode.GeometricRotation.value.map( THREE.Math.degToRad ); array[ 3 ] = 'ZYX'; preTransform.makeRotationFromEuler( new THREE.Euler().fromArray( array ) ); } if ( 'GeometricTranslation' in modelNode ) { preTransform.setPosition( new THREE.Vector3().fromArray( modelNode.GeometricTranslation.value ) ); } if ( 'GeometricScaling' in modelNode ) { preTransform.scale( new THREE.Vector3().fromArray( modelNode.GeometricScaling.value ) ); } return genGeometry( FBXTree, geoNode, skeleton, morphTarget, preTransform ); } // Generate a THREE.BufferGeometry from a node in FBXTree.Objects.Geometry function genGeometry( FBXTree, geoNode, skeleton, morphTarget, preTransform ) { var geo = new THREE.BufferGeometry(); if ( geoNode.attrName ) geo.name = geoNode.attrName; var geoInfo = getGeoInfo( geoNode, skeleton ); var buffers = genBuffers( geoInfo ); var positionAttribute = new THREE.Float32BufferAttribute( buffers.vertex, 3 ); preTransform.applyToBufferAttribute( positionAttribute ); geo.addAttribute( 'position', positionAttribute ); if ( buffers.colors.length > 0 ) { geo.addAttribute( 'color', new THREE.Float32BufferAttribute( buffers.colors, 3 ) ); } if ( skeleton ) { geo.addAttribute( 'skinIndex', new THREE.Uint16BufferAttribute( buffers.weightsIndices, 4 ) ); geo.addAttribute( 'skinWeight', new THREE.Float32BufferAttribute( buffers.vertexWeights, 4 ) ); // used later to bind the skeleton to the model geo.FBX_Deformer = skeleton; } if ( buffers.normal.length > 0 ) { var normalAttribute = new THREE.Float32BufferAttribute( buffers.normal, 3 ); var normalMatrix = new THREE.Matrix3().getNormalMatrix( preTransform ); normalMatrix.applyToBufferAttribute( normalAttribute ); geo.addAttribute( 'normal', normalAttribute ); } buffers.uvs.forEach( function ( uvBuffer, i ) { // subsequent uv buffers are called 'uv1', 'uv2', ... var name = 'uv' + ( i + 1 ).toString(); // the first uv buffer is just called 'uv' if ( i === 0 ) { name = 'uv'; } geo.addAttribute( name, new THREE.Float32BufferAttribute( buffers.uvs[ i ], 2 ) ); } ); if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { // Convert the material indices of each vertex into rendering groups on the geometry. var prevMaterialIndex = buffers.materialIndex[ 0 ]; var startIndex = 0; buffers.materialIndex.forEach( function ( currentIndex, i ) { if ( currentIndex !== prevMaterialIndex ) { geo.addGroup( startIndex, i - startIndex, prevMaterialIndex ); prevMaterialIndex = currentIndex; startIndex = i; } } ); // the loop above doesn't add the last group, do that here. if ( geo.groups.length > 0 ) { var lastGroup = geo.groups[ geo.groups.length - 1 ]; var lastIndex = lastGroup.start + lastGroup.count; if ( lastIndex !== buffers.materialIndex.length ) { geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex ); } } // case where there are multiple materials but the whole geometry is only // using one of them if ( geo.groups.length === 0 ) { geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] ); } } addMorphTargets( FBXTree, geo, geoNode, morphTarget, preTransform ); return geo; } function getGeoInfo( geoNode, skeleton ) { var geoInfo = {}; geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : []; geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : []; if ( geoNode.LayerElementColor ) { geoInfo.color = getColors( geoNode.LayerElementColor[ 0 ] ); } if ( geoNode.LayerElementMaterial ) { geoInfo.material = getMaterials( geoNode.LayerElementMaterial[ 0 ] ); } if ( geoNode.LayerElementNormal ) { geoInfo.normal = getNormals( geoNode.LayerElementNormal[ 0 ] ); } if ( geoNode.LayerElementUV ) { geoInfo.uv = []; var i = 0; while ( geoNode.LayerElementUV[ i ] ) { geoInfo.uv.push( getUVs( geoNode.LayerElementUV[ i ] ) ); i ++; } } geoInfo.weightTable = {}; if ( skeleton !== null ) { geoInfo.skeleton = skeleton; skeleton.rawBones.forEach( function ( rawBone, i ) { // loop over the bone's vertex indices and weights rawBone.indices.forEach( function ( index, j ) { if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = []; geoInfo.weightTable[ index ].push( { id: i, weight: rawBone.weights[ j ], } ); } ); } ); } return geoInfo; } function genBuffers( geoInfo ) { var buffers = { vertex: [], normal: [], colors: [], uvs: [], materialIndex: [], vertexWeights: [], weightsIndices: [], }; var polygonIndex = 0; var faceLength = 0; var displayedWeightsWarning = false; // these will hold data for a single face var facePositionIndexes = []; var faceNormals = []; var faceColors = []; var faceUVs = []; var faceWeights = []; var faceWeightIndices = []; geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) { var endOfFace = false; // Face index and vertex index arrays are combined in a single array // A cube with quad faces looks like this: // PolygonVertexIndex: *24 { // a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5 // } // Negative numbers mark the end of a face - first face here is 0, 1, 3, -3 // to find index of last vertex bit shift the index: ^ - 1 if ( vertexIndex < 0 ) { vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1 endOfFace = true; } var weightIndices = []; var weights = []; facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 ); if ( geoInfo.color ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color ); faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( geoInfo.skeleton ) { if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) { geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) { weights.push( wt.weight ); weightIndices.push( wt.id ); } ); } if ( weights.length > 4 ) { if ( ! displayedWeightsWarning ) { console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' ); displayedWeightsWarning = true; } var wIndex = [ 0, 0, 0, 0 ]; var Weight = [ 0, 0, 0, 0 ]; weights.forEach( function ( weight, weightIndex ) { var currentWeight = weight; var currentIndex = weightIndices[ weightIndex ]; Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) { if ( currentWeight > comparedWeight ) { comparedWeightArray[ comparedWeightIndex ] = currentWeight; currentWeight = comparedWeight; var tmp = wIndex[ comparedWeightIndex ]; wIndex[ comparedWeightIndex ] = currentIndex; currentIndex = tmp; } } ); } ); weightIndices = wIndex; weights = Weight; } // if the weight array is shorter than 4 pad with 0s while ( weights.length < 4 ) { weights.push( 0 ); weightIndices.push( 0 ); } for ( var i = 0; i < 4; ++ i ) { faceWeights.push( weights[ i ] ); faceWeightIndices.push( weightIndices[ i ] ); } } if ( geoInfo.normal ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal ); faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] ); } if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { var materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ]; } if ( geoInfo.uv ) { geoInfo.uv.forEach( function ( uv, i ) { var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv ); if ( faceUVs[ i ] === undefined ) { faceUVs[ i ] = []; } faceUVs[ i ].push( data[ 0 ] ); faceUVs[ i ].push( data[ 1 ] ); } ); } faceLength ++; if ( endOfFace ) { genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ); polygonIndex ++; faceLength = 0; // reset arrays for the next face facePositionIndexes = []; faceNormals = []; faceColors = []; faceUVs = []; faceWeights = []; faceWeightIndices = []; } } ); return buffers; } // Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris function genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) { for ( var i = 2; i < faceLength; i ++ ) { buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 0 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 1 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 2 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 + 1 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 + 2 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 + 1 ] ] ); buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 + 2 ] ] ); if ( geoInfo.skeleton ) { buffers.vertexWeights.push( faceWeights[ 0 ] ); buffers.vertexWeights.push( faceWeights[ 1 ] ); buffers.vertexWeights.push( faceWeights[ 2 ] ); buffers.vertexWeights.push( faceWeights[ 3 ] ); buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 ] ); buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 1 ] ); buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 2 ] ); buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 3 ] ); buffers.vertexWeights.push( faceWeights[ i * 4 ] ); buffers.vertexWeights.push( faceWeights[ i * 4 + 1 ] ); buffers.vertexWeights.push( faceWeights[ i * 4 + 2 ] ); buffers.vertexWeights.push( faceWeights[ i * 4 + 3 ] ); buffers.weightsIndices.push( faceWeightIndices[ 0 ] ); buffers.weightsIndices.push( faceWeightIndices[ 1 ] ); buffers.weightsIndices.push( faceWeightIndices[ 2 ] ); buffers.weightsIndices.push( faceWeightIndices[ 3 ] ); buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 ] ); buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 1 ] ); buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 2 ] ); buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 3 ] ); buffers.weightsIndices.push( faceWeightIndices[ i * 4 ] ); buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 1 ] ); buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 2 ] ); buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 3 ] ); } if ( geoInfo.color ) { buffers.colors.push( faceColors[ 0 ] ); buffers.colors.push( faceColors[ 1 ] ); buffers.colors.push( faceColors[ 2 ] ); buffers.colors.push( faceColors[ ( i - 1 ) * 3 ] ); buffers.colors.push( faceColors[ ( i - 1 ) * 3 + 1 ] ); buffers.colors.push( faceColors[ ( i - 1 ) * 3 + 2 ] ); buffers.colors.push( faceColors[ i * 3 ] ); buffers.colors.push( faceColors[ i * 3 + 1 ] ); buffers.colors.push( faceColors[ i * 3 + 2 ] ); } if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { buffers.materialIndex.push( materialIndex ); buffers.materialIndex.push( materialIndex ); buffers.materialIndex.push( materialIndex ); } if ( geoInfo.normal ) { buffers.normal.push( faceNormals[ 0 ] ); buffers.normal.push( faceNormals[ 1 ] ); buffers.normal.push( faceNormals[ 2 ] ); buffers.normal.push( faceNormals[ ( i - 1 ) * 3 ] ); buffers.normal.push( faceNormals[ ( i - 1 ) * 3 + 1 ] ); buffers.normal.push( faceNormals[ ( i - 1 ) * 3 + 2 ] ); buffers.normal.push( faceNormals[ i * 3 ] ); buffers.normal.push( faceNormals[ i * 3 + 1 ] ); buffers.normal.push( faceNormals[ i * 3 + 2 ] ); } if ( geoInfo.uv ) { geoInfo.uv.forEach( function ( uv, j ) { if ( buffers.uvs[ j ] === undefined ) buffers.uvs[ j ] = []; buffers.uvs[ j ].push( faceUVs[ j ][ 0 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ 1 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 + 1 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ i * 2 ] ); buffers.uvs[ j ].push( faceUVs[ j ][ i * 2 + 1 ] ); } ); } } } function addMorphTargets( FBXTree, parentGeo, parentGeoNode, morphTarget, preTransform ) { if ( morphTarget === null ) return; parentGeo.morphAttributes.position = []; parentGeo.morphAttributes.normal = []; morphTarget.rawTargets.forEach( function ( rawTarget ) { var morphGeoNode = FBXTree.Objects.Geometry[ rawTarget.geoID ]; if ( morphGeoNode !== undefined ) { genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform ); } } ); } // a morph geometry node is similar to a standard node, and the node is also contained // in FBXTree.Objects.Geometry, however it can only have attributes for position, normal // and a special attribute Index defining which vertices of the original geometry are affected // Normal and position attributes only have data for the vertices that are affected by the morph function genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform ) { var morphGeo = new THREE.BufferGeometry(); if ( morphGeoNode.attrName ) morphGeo.name = morphGeoNode.attrName; var vertexIndices = ( parentGeoNode.PolygonVertexIndex !== undefined ) ? parentGeoNode.PolygonVertexIndex.a : []; // make a copy of the parent's vertex positions var vertexPositions = ( parentGeoNode.Vertices !== undefined ) ? parentGeoNode.Vertices.a.slice() : []; var morphPositions = ( morphGeoNode.Vertices !== undefined ) ? morphGeoNode.Vertices.a : []; var indices = ( morphGeoNode.Indexes !== undefined ) ? morphGeoNode.Indexes.a : []; for ( var i = 0; i < indices.length; i ++ ) { var morphIndex = indices[ i ] * 3; // FBX format uses blend shapes rather than morph targets. This can be converted // by additively combining the blend shape positions with the original geometry's positions vertexPositions[ morphIndex ] += morphPositions[ i * 3 ]; vertexPositions[ morphIndex + 1 ] += morphPositions[ i * 3 + 1 ]; vertexPositions[ morphIndex + 2 ] += morphPositions[ i * 3 + 2 ]; } // TODO: add morph normal support var morphGeoInfo = { vertexIndices: vertexIndices, vertexPositions: vertexPositions, }; var morphBuffers = genBuffers( morphGeoInfo ); var positionAttribute = new THREE.Float32BufferAttribute( morphBuffers.vertex, 3 ); positionAttribute.name = morphGeoNode.attrName; preTransform.applyToBufferAttribute( positionAttribute ); parentGeo.morphAttributes.position.push( positionAttribute ); } // Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists function getNormals( NormalNode ) { var mappingType = NormalNode.MappingInformationType; var referenceType = NormalNode.ReferenceInformationType; var buffer = NormalNode.Normals.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { if ( 'NormalIndex' in NormalNode ) { indexBuffer = NormalNode.NormalIndex.a; } else if ( 'NormalsIndex' in NormalNode ) { indexBuffer = NormalNode.NormalsIndex.a; } } return { dataSize: 3, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists function getUVs( UVNode ) { var mappingType = UVNode.MappingInformationType; var referenceType = UVNode.ReferenceInformationType; var buffer = UVNode.UV.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = UVNode.UVIndex.a; } return { dataSize: 2, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists function getColors( ColorNode ) { var mappingType = ColorNode.MappingInformationType; var referenceType = ColorNode.ReferenceInformationType; var buffer = ColorNode.Colors.a; var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = ColorNode.ColorIndex.a; } return { dataSize: 4, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists function getMaterials( MaterialNode ) { var mappingType = MaterialNode.MappingInformationType; var referenceType = MaterialNode.ReferenceInformationType; if ( mappingType === 'NoMappingInformation' ) { return { dataSize: 1, buffer: [ 0 ], indices: [ 0 ], mappingType: 'AllSame', referenceType: referenceType }; } var materialIndexBuffer = MaterialNode.Materials.a; // Since materials are stored as indices, there's a bit of a mismatch between FBX and what // we expect.So we create an intermediate buffer that points to the index in the buffer,