threejs-fbxloader
Version:
loader for *.fbx models
1,497 lines (914 loc) • 122 kB
JavaScript
/**
* @author Kyle-Larson https://github.com/Kyle-Larson
* @author Takahiro https://github.com/takahirox
* @author Lewy Blue https://github.com/looeee
*
* Loader loads FBX file and generates Group representing FBX scene.
* Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format
* Versions lower than this may load but will probably have errors
*
* Needs Support:
* Morph normals / blend shape normals
* Animation tracks for morph targets
*
* Euler rotation order
*
* FBX format references:
* https://wiki.blender.org/index.php/User:Mont29/Foundation/FBX_File_Structure
* http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html (C++ SDK reference)
*
* Binary format specification:
* https://code.blender.org/2013/08/fbx-binary-file-format-specification/
*/
module.exports = function(THREE){
( function () {
THREE.FBXLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
Object.assign( THREE.FBXLoader.prototype, {
crossOrigin: 'anonymous',
load: function ( url, onLoad, onProgress, onError ) {
var self = this;
var resourceDirectory = THREE.LoaderUtils.extractUrlBase( url );
var loader = new THREE.FileLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
try {
var scene = self.parse( buffer, resourceDirectory );
onLoad( scene );
} catch ( error ) {
setTimeout( function () {
if ( onError ) onError( error );
self.manager.itemError( url );
}, 0 );
}
}, onProgress, onError );
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
parse: function ( FBXBuffer, resourceDirectory ) {
var FBXTree;
if ( isFbxFormatBinary( FBXBuffer ) ) {
FBXTree = new BinaryParser().parse( FBXBuffer );
} else {
var FBXText = convertArrayBufferToString( FBXBuffer );
if ( ! isFbxFormatASCII( FBXText ) ) {
throw new Error( 'THREE.FBXLoader: Unknown format.' );
}
if ( getFbxVersion( FBXText ) < 7000 ) {
throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) );
}
FBXTree = new TextParser().parse( FBXText );
}
// console.log( FBXTree );
var textureLoader = new THREE.TextureLoader( this.manager ).setPath( resourceDirectory ).setCrossOrigin( this.crossOrigin );
var connections = parseConnections( FBXTree );
var images = parseImages( FBXTree );
var textures = parseTextures( FBXTree, textureLoader, images, connections );
var materials = parseMaterials( FBXTree, textures, connections );
var deformers = parseDeformers( FBXTree, connections );
var geometryMap = parseGeometries( FBXTree, connections, deformers );
var sceneGraph = parseScene( FBXTree, connections, deformers, geometryMap, materials );
return sceneGraph;
}
} );
// Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry )
// and details the connection type
function parseConnections( FBXTree ) {
var connectionMap = new Map();
if ( 'Connections' in FBXTree ) {
var rawConnections = FBXTree.Connections.connections;
rawConnections.forEach( function ( rawConnection ) {
var fromID = rawConnection[ 0 ];
var toID = rawConnection[ 1 ];
var relationship = rawConnection[ 2 ];
if ( ! connectionMap.has( fromID ) ) {
connectionMap.set( fromID, {
parents: [],
children: []
} );
}
var parentRelationship = { ID: toID, relationship: relationship };
connectionMap.get( fromID ).parents.push( parentRelationship );
if ( ! connectionMap.has( toID ) ) {
connectionMap.set( toID, {
parents: [],
children: []
} );
}
var childRelationship = { ID: fromID, relationship: relationship };
connectionMap.get( toID ).children.push( childRelationship );
} );
}
return connectionMap;
}
// Parse FBXTree.Objects.Video for embedded image data
// These images are connected to textures in FBXTree.Objects.Textures
// via FBXTree.Connections.
function parseImages( FBXTree ) {
var images = {};
var blobs = {};
if ( 'Video' in FBXTree.Objects ) {
var videoNodes = FBXTree.Objects.Video;
for ( var nodeID in videoNodes ) {
var videoNode = videoNodes[ nodeID ];
var id = parseInt( nodeID );
images[ id ] = videoNode.RelativeFilename || videoNode.Filename;
// raw image data is in videoNode.Content
if ( 'Content' in videoNode ) {
var arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 );
var base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' );
if ( arrayBufferContent || base64Content ) {
var image = parseImage( videoNodes[ nodeID ] );
blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image;
}
}
}
}
for ( var id in images ) {
var filename = images[ id ];
if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ];
else images[ id ] = images[ id ].split( '\\' ).pop();
}
return images;
}
// Parse embedded image data in FBXTree.Video.Content
function parseImage( videoNode ) {
var content = videoNode.Content;
var fileName = videoNode.RelativeFilename || videoNode.Filename;
var extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase();
var type;
switch ( extension ) {
case 'bmp':
type = 'image/bmp';
break;
case 'jpg':
case 'jpeg':
type = 'image/jpeg';
break;
case 'png':
type = 'image/png';
break;
case 'tif':
type = 'image/tiff';
break;
case 'tga':
if ( typeof THREE.TGALoader !== 'function' ) {
console.warn( 'FBXLoader: THREE.TGALoader is required to load TGA textures' );
return;
} else {
if ( THREE.Loader.Handlers.get( '.tga' ) === null ) {
THREE.Loader.Handlers.add( /\.tga$/i, new THREE.TGALoader() );
}
type = 'image/tga';
break;
}
default:
console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' );
return;
}
if ( typeof content === 'string' ) { // ASCII format
return 'data:' + type + ';base64,' + content;
} else { // Binary Format
var array = new Uint8Array( content );
return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) );
}
}
// Parse nodes in FBXTree.Objects.Texture
// These contain details such as UV scaling, cropping, rotation etc and are connected
// to images in FBXTree.Objects.Video
function parseTextures( FBXTree, loader, images, connections ) {
var textureMap = new Map();
if ( 'Texture' in FBXTree.Objects ) {
var textureNodes = FBXTree.Objects.Texture;
for ( var nodeID in textureNodes ) {
var texture = parseTexture( textureNodes[ nodeID ], loader, images, connections );
textureMap.set( parseInt( nodeID ), texture );
}
}
return textureMap;
}
// Parse individual node in FBXTree.Objects.Texture
function parseTexture( textureNode, loader, images, connections ) {
var texture = loadTexture( textureNode, loader, images, connections );
texture.ID = textureNode.id;
texture.name = textureNode.attrName;
var wrapModeU = textureNode.WrapModeU;
var wrapModeV = textureNode.WrapModeV;
var valueU = wrapModeU !== undefined ? wrapModeU.value : 0;
var valueV = wrapModeV !== undefined ? wrapModeV.value : 0;
// http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a
// 0: repeat(default), 1: clamp
texture.wrapS = valueU === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping;
texture.wrapT = valueV === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping;
if ( 'Scaling' in textureNode ) {
var values = textureNode.Scaling.value;
texture.repeat.x = values[ 0 ];
texture.repeat.y = values[ 1 ];
}
return texture;
}
// load a texture specified as a blob or data URI, or via an external URL using THREE.TextureLoader
function loadTexture( textureNode, loader, images, connections ) {
var fileName;
var currentPath = loader.path;
var children = connections.get( textureNode.id ).children;
if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) {
fileName = images[ children[ 0 ].ID ];
if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) {
loader.setPath( undefined );
}
}
var texture;
if ( textureNode.FileName.slice( - 3 ).toLowerCase() === 'tga' ) {
texture = THREE.Loader.Handlers.get( '.tga' ).load( fileName );
} else {
texture = loader.load( fileName );
}
loader.setPath( currentPath );
return texture;
}
// Parse nodes in FBXTree.Objects.Material
function parseMaterials( FBXTree, textureMap, connections ) {
var materialMap = new Map();
if ( 'Material' in FBXTree.Objects ) {
var materialNodes = FBXTree.Objects.Material;
for ( var nodeID in materialNodes ) {
var material = parseMaterial( FBXTree, materialNodes[ nodeID ], textureMap, connections );
if ( material !== null ) materialMap.set( parseInt( nodeID ), material );
}
}
return materialMap;
}
// Parse single node in FBXTree.Objects.Material
// Materials are connected to texture maps in FBXTree.Objects.Textures
// FBX format currently only supports Lambert and Phong shading models
function parseMaterial( FBXTree, materialNode, textureMap, connections ) {
var ID = materialNode.id;
var name = materialNode.attrName;
var type = materialNode.ShadingModel;
// Case where FBX wraps shading model in property object.
if ( typeof type === 'object' ) {
type = type.value;
}
// Ignore unused materials which don't have any connections.
if ( ! connections.has( ID ) ) return null;
var parameters = parseParameters( FBXTree, materialNode, textureMap, ID, connections );
var material;
switch ( type.toLowerCase() ) {
case 'phong':
material = new THREE.MeshPhongMaterial();
break;
case 'lambert':
material = new THREE.MeshLambertMaterial();
break;
default:
console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type );
material = new THREE.MeshPhongMaterial( { color: 0x3300ff } );
break;
}
material.setValues( parameters );
material.name = name;
return material;
}
// Parse FBX material and return parameters suitable for a three.js material
// Also parse the texture map and return any textures associated with the material
function parseParameters( FBXTree, properties, textureMap, ID, connections ) {
var parameters = {};
if ( properties.BumpFactor ) {
parameters.bumpScale = properties.BumpFactor.value;
}
if ( properties.Diffuse ) {
parameters.color = new THREE.Color().fromArray( properties.Diffuse.value );
} else if ( properties.DiffuseColor && properties.DiffuseColor.type === 'Color' ) {
// The blender exporter exports diffuse here instead of in properties.Diffuse
parameters.color = new THREE.Color().fromArray( properties.DiffuseColor.value );
}
if ( properties.DisplacementFactor ) {
parameters.displacementScale = properties.DisplacementFactor.value;
}
if ( properties.Emissive ) {
parameters.emissive = new THREE.Color().fromArray( properties.Emissive.value );
} else if ( properties.EmissiveColor && properties.EmissiveColor.type === 'Color' ) {
// The blender exporter exports emissive color here instead of in properties.Emissive
parameters.emissive = new THREE.Color().fromArray( properties.EmissiveColor.value );
}
if ( properties.EmissiveFactor ) {
parameters.emissiveIntensity = parseFloat( properties.EmissiveFactor.value );
}
if ( properties.Opacity ) {
parameters.opacity = parseFloat( properties.Opacity.value );
}
if ( parameters.opacity < 1.0 ) {
parameters.transparent = true;
}
if ( properties.ReflectionFactor ) {
parameters.reflectivity = properties.ReflectionFactor.value;
}
if ( properties.Shininess ) {
parameters.shininess = properties.Shininess.value;
}
if ( properties.Specular ) {
parameters.specular = new THREE.Color().fromArray( properties.Specular.value );
} else if ( properties.SpecularColor && properties.SpecularColor.type === 'Color' ) {
// The blender exporter exports specular color here instead of in properties.Specular
parameters.specular = new THREE.Color().fromArray( properties.SpecularColor.value );
}
connections.get( ID ).children.forEach( function ( child ) {
var type = child.relationship;
switch ( type ) {
case 'Bump':
parameters.bumpMap = textureMap.get( child.ID );
break;
case 'DiffuseColor':
parameters.map = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'DisplacementColor':
parameters.displacementMap = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'EmissiveColor':
parameters.emissiveMap = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'NormalMap':
parameters.normalMap = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'ReflectionColor':
parameters.envMap = getTexture( FBXTree, textureMap, child.ID, connections );
parameters.envMap.mapping = THREE.EquirectangularReflectionMapping;
break;
case 'SpecularColor':
parameters.specularMap = getTexture( FBXTree, textureMap, child.ID, connections );
break;
case 'TransparentColor':
parameters.alphaMap = getTexture( FBXTree, textureMap, child.ID, connections );
parameters.transparent = true;
break;
case 'AmbientColor':
case 'ShininessExponent': // AKA glossiness map
case 'SpecularFactor': // AKA specularLevel
case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor
default:
console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type );
break;
}
} );
return parameters;
}
// get a texture from the textureMap for use by a material.
function getTexture( FBXTree, textureMap, id, connections ) {
// if the texture is a layered texture, just use the first layer and issue a warning
if ( 'LayeredTexture' in FBXTree.Objects && id in FBXTree.Objects.LayeredTexture ) {
console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' );
id = connections.get( id ).children[ 0 ].ID;
}
return textureMap.get( id );
}
// Parse nodes in FBXTree.Objects.Deformer
// Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here
// Generates map of Skeleton-like objects for use later when generating and binding skeletons.
function parseDeformers( FBXTree, connections ) {
var skeletons = {};
var morphTargets = {};
if ( 'Deformer' in FBXTree.Objects ) {
var DeformerNodes = FBXTree.Objects.Deformer;
for ( var nodeID in DeformerNodes ) {
var deformerNode = DeformerNodes[ nodeID ];
var relationships = connections.get( parseInt( nodeID ) );
if ( deformerNode.attrType === 'Skin' ) {
var skeleton = parseSkeleton( relationships, DeformerNodes );
skeleton.ID = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' );
skeleton.geometryID = relationships.parents[ 0 ].ID;
skeletons[ nodeID ] = skeleton;
} else if ( deformerNode.attrType === 'BlendShape' ) {
var morphTarget = {
id: nodeID,
};
morphTarget.rawTargets = parseMorphTargets( relationships, DeformerNodes, connections );
morphTarget.id = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' );
morphTargets[ nodeID ] = morphTarget;
}
}
}
return {
skeletons: skeletons,
morphTargets: morphTargets,
};
}
// Parse single nodes in FBXTree.Objects.Deformer
// The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster'
// Each skin node represents a skeleton and each cluster node represents a bone
function parseSkeleton( connections, deformerNodes ) {
var rawBones = [];
connections.children.forEach( function ( child ) {
var boneNode = deformerNodes[ child.ID ];
if ( boneNode.attrType !== 'Cluster' ) return;
var rawBone = {
ID: child.ID,
indices: [],
weights: [],
transform: new THREE.Matrix4().fromArray( boneNode.Transform.a ),
transformLink: new THREE.Matrix4().fromArray( boneNode.TransformLink.a ),
linkMode: boneNode.Mode,
};
if ( 'Indexes' in boneNode ) {
rawBone.indices = boneNode.Indexes.a;
rawBone.weights = boneNode.Weights.a;
}
rawBones.push( rawBone );
} );
return {
rawBones: rawBones,
bones: []
};
}
// The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel"
function parseMorphTargets( relationships, deformerNodes, connections ) {
var rawMorphTargets = [];
for ( var i = 0; i < relationships.children.length; i ++ ) {
if ( i === 8 ) {
console.warn( 'FBXLoader: maximum of 8 morph targets supported. Ignoring additional targets.' );
break;
}
var child = relationships.children[ i ];
var morphTargetNode = deformerNodes[ child.ID ];
var rawMorphTarget = {
name: morphTargetNode.attrName,
initialWeight: morphTargetNode.DeformPercent,
id: morphTargetNode.id,
fullWeights: morphTargetNode.FullWeights.a
};
if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return;
var targetRelationships = connections.get( parseInt( child.ID ) );
targetRelationships.children.forEach( function ( child ) {
if ( child.relationship === undefined ) rawMorphTarget.geoID = child.ID;
} );
rawMorphTargets.push( rawMorphTarget );
}
return rawMorphTargets;
}
// Parse nodes in FBXTree.Objects.Geometry
function parseGeometries( FBXTree, connections, deformers ) {
var geometryMap = new Map();
if ( 'Geometry' in FBXTree.Objects ) {
var geoNodes = FBXTree.Objects.Geometry;
for ( var nodeID in geoNodes ) {
var relationships = connections.get( parseInt( nodeID ) );
var geo = parseGeometry( FBXTree, relationships, geoNodes[ nodeID ], deformers );
geometryMap.set( parseInt( nodeID ), geo );
}
}
return geometryMap;
}
// Parse single node in FBXTree.Objects.Geometry
function parseGeometry( FBXTree, relationships, geoNode, deformers ) {
switch ( geoNode.attrType ) {
case 'Mesh':
return parseMeshGeometry( FBXTree, relationships, geoNode, deformers );
break;
case 'NurbsCurve':
return parseNurbsGeometry( geoNode );
break;
}
}
// Parse single node mesh geometry in FBXTree.Objects.Geometry
function parseMeshGeometry( FBXTree, relationships, geoNode, deformers ) {
var skeletons = deformers.skeletons;
var morphTargets = deformers.morphTargets;
var modelNodes = relationships.parents.map( function ( parent ) {
return FBXTree.Objects.Model[ parent.ID ];
} );
// don't create geometry if it is not associated with any models
if ( modelNodes.length === 0 ) return;
var skeleton = relationships.children.reduce( function ( skeleton, child ) {
if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ];
return skeleton;
}, null );
var morphTarget = relationships.children.reduce( function ( morphTarget, child ) {
if ( morphTargets[ child.ID ] !== undefined ) morphTarget = morphTargets[ child.ID ];
return morphTarget;
}, null );
var preTransform = new THREE.Matrix4();
// TODO: if there is more than one model associated with the geometry, AND the models have
// different geometric transforms, then this will cause problems
// if ( modelNodes.length > 1 ) { }
// For now just assume one model and get the preRotations from that
var modelNode = modelNodes[ 0 ];
if ( 'GeometricRotation' in modelNode ) {
var array = modelNode.GeometricRotation.value.map( THREE.Math.degToRad );
array[ 3 ] = 'ZYX';
preTransform.makeRotationFromEuler( new THREE.Euler().fromArray( array ) );
}
if ( 'GeometricTranslation' in modelNode ) {
preTransform.setPosition( new THREE.Vector3().fromArray( modelNode.GeometricTranslation.value ) );
}
if ( 'GeometricScaling' in modelNode ) {
preTransform.scale( new THREE.Vector3().fromArray( modelNode.GeometricScaling.value ) );
}
return genGeometry( FBXTree, geoNode, skeleton, morphTarget, preTransform );
}
// Generate a THREE.BufferGeometry from a node in FBXTree.Objects.Geometry
function genGeometry( FBXTree, geoNode, skeleton, morphTarget, preTransform ) {
var geo = new THREE.BufferGeometry();
if ( geoNode.attrName ) geo.name = geoNode.attrName;
var geoInfo = getGeoInfo( geoNode, skeleton );
var buffers = genBuffers( geoInfo );
var positionAttribute = new THREE.Float32BufferAttribute( buffers.vertex, 3 );
preTransform.applyToBufferAttribute( positionAttribute );
geo.addAttribute( 'position', positionAttribute );
if ( buffers.colors.length > 0 ) {
geo.addAttribute( 'color', new THREE.Float32BufferAttribute( buffers.colors, 3 ) );
}
if ( skeleton ) {
geo.addAttribute( 'skinIndex', new THREE.Uint16BufferAttribute( buffers.weightsIndices, 4 ) );
geo.addAttribute( 'skinWeight', new THREE.Float32BufferAttribute( buffers.vertexWeights, 4 ) );
// used later to bind the skeleton to the model
geo.FBX_Deformer = skeleton;
}
if ( buffers.normal.length > 0 ) {
var normalAttribute = new THREE.Float32BufferAttribute( buffers.normal, 3 );
var normalMatrix = new THREE.Matrix3().getNormalMatrix( preTransform );
normalMatrix.applyToBufferAttribute( normalAttribute );
geo.addAttribute( 'normal', normalAttribute );
}
buffers.uvs.forEach( function ( uvBuffer, i ) {
// subsequent uv buffers are called 'uv1', 'uv2', ...
var name = 'uv' + ( i + 1 ).toString();
// the first uv buffer is just called 'uv'
if ( i === 0 ) {
name = 'uv';
}
geo.addAttribute( name, new THREE.Float32BufferAttribute( buffers.uvs[ i ], 2 ) );
} );
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
// Convert the material indices of each vertex into rendering groups on the geometry.
var prevMaterialIndex = buffers.materialIndex[ 0 ];
var startIndex = 0;
buffers.materialIndex.forEach( function ( currentIndex, i ) {
if ( currentIndex !== prevMaterialIndex ) {
geo.addGroup( startIndex, i - startIndex, prevMaterialIndex );
prevMaterialIndex = currentIndex;
startIndex = i;
}
} );
// the loop above doesn't add the last group, do that here.
if ( geo.groups.length > 0 ) {
var lastGroup = geo.groups[ geo.groups.length - 1 ];
var lastIndex = lastGroup.start + lastGroup.count;
if ( lastIndex !== buffers.materialIndex.length ) {
geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex );
}
}
// case where there are multiple materials but the whole geometry is only
// using one of them
if ( geo.groups.length === 0 ) {
geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] );
}
}
addMorphTargets( FBXTree, geo, geoNode, morphTarget, preTransform );
return geo;
}
function getGeoInfo( geoNode, skeleton ) {
var geoInfo = {};
geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : [];
geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : [];
if ( geoNode.LayerElementColor ) {
geoInfo.color = getColors( geoNode.LayerElementColor[ 0 ] );
}
if ( geoNode.LayerElementMaterial ) {
geoInfo.material = getMaterials( geoNode.LayerElementMaterial[ 0 ] );
}
if ( geoNode.LayerElementNormal ) {
geoInfo.normal = getNormals( geoNode.LayerElementNormal[ 0 ] );
}
if ( geoNode.LayerElementUV ) {
geoInfo.uv = [];
var i = 0;
while ( geoNode.LayerElementUV[ i ] ) {
geoInfo.uv.push( getUVs( geoNode.LayerElementUV[ i ] ) );
i ++;
}
}
geoInfo.weightTable = {};
if ( skeleton !== null ) {
geoInfo.skeleton = skeleton;
skeleton.rawBones.forEach( function ( rawBone, i ) {
// loop over the bone's vertex indices and weights
rawBone.indices.forEach( function ( index, j ) {
if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = [];
geoInfo.weightTable[ index ].push( {
id: i,
weight: rawBone.weights[ j ],
} );
} );
} );
}
return geoInfo;
}
function genBuffers( geoInfo ) {
var buffers = {
vertex: [],
normal: [],
colors: [],
uvs: [],
materialIndex: [],
vertexWeights: [],
weightsIndices: [],
};
var polygonIndex = 0;
var faceLength = 0;
var displayedWeightsWarning = false;
// these will hold data for a single face
var facePositionIndexes = [];
var faceNormals = [];
var faceColors = [];
var faceUVs = [];
var faceWeights = [];
var faceWeightIndices = [];
geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) {
var endOfFace = false;
// Face index and vertex index arrays are combined in a single array
// A cube with quad faces looks like this:
// PolygonVertexIndex: *24 {
// a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5
// }
// Negative numbers mark the end of a face - first face here is 0, 1, 3, -3
// to find index of last vertex bit shift the index: ^ - 1
if ( vertexIndex < 0 ) {
vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1
endOfFace = true;
}
var weightIndices = [];
var weights = [];
facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 );
if ( geoInfo.color ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color );
faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( geoInfo.skeleton ) {
if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) {
geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) {
weights.push( wt.weight );
weightIndices.push( wt.id );
} );
}
if ( weights.length > 4 ) {
if ( ! displayedWeightsWarning ) {
console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' );
displayedWeightsWarning = true;
}
var wIndex = [ 0, 0, 0, 0 ];
var Weight = [ 0, 0, 0, 0 ];
weights.forEach( function ( weight, weightIndex ) {
var currentWeight = weight;
var currentIndex = weightIndices[ weightIndex ];
Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) {
if ( currentWeight > comparedWeight ) {
comparedWeightArray[ comparedWeightIndex ] = currentWeight;
currentWeight = comparedWeight;
var tmp = wIndex[ comparedWeightIndex ];
wIndex[ comparedWeightIndex ] = currentIndex;
currentIndex = tmp;
}
} );
} );
weightIndices = wIndex;
weights = Weight;
}
// if the weight array is shorter than 4 pad with 0s
while ( weights.length < 4 ) {
weights.push( 0 );
weightIndices.push( 0 );
}
for ( var i = 0; i < 4; ++ i ) {
faceWeights.push( weights[ i ] );
faceWeightIndices.push( weightIndices[ i ] );
}
}
if ( geoInfo.normal ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal );
faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
var materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ];
}
if ( geoInfo.uv ) {
geoInfo.uv.forEach( function ( uv, i ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv );
if ( faceUVs[ i ] === undefined ) {
faceUVs[ i ] = [];
}
faceUVs[ i ].push( data[ 0 ] );
faceUVs[ i ].push( data[ 1 ] );
} );
}
faceLength ++;
if ( endOfFace ) {
genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength );
polygonIndex ++;
faceLength = 0;
// reset arrays for the next face
facePositionIndexes = [];
faceNormals = [];
faceColors = [];
faceUVs = [];
faceWeights = [];
faceWeightIndices = [];
}
} );
return buffers;
}
// Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris
function genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) {
for ( var i = 2; i < faceLength; i ++ ) {
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 0 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 2 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 + 2 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 + 2 ] ] );
if ( geoInfo.skeleton ) {
buffers.vertexWeights.push( faceWeights[ 0 ] );
buffers.vertexWeights.push( faceWeights[ 1 ] );
buffers.vertexWeights.push( faceWeights[ 2 ] );
buffers.vertexWeights.push( faceWeights[ 3 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 3 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ 0 ] );
buffers.weightsIndices.push( faceWeightIndices[ 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 3 ] );
}
if ( geoInfo.color ) {
buffers.colors.push( faceColors[ 0 ] );
buffers.colors.push( faceColors[ 1 ] );
buffers.colors.push( faceColors[ 2 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 + 1 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 + 2 ] );
buffers.colors.push( faceColors[ i * 3 ] );
buffers.colors.push( faceColors[ i * 3 + 1 ] );
buffers.colors.push( faceColors[ i * 3 + 2 ] );
}
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
buffers.materialIndex.push( materialIndex );
buffers.materialIndex.push( materialIndex );
buffers.materialIndex.push( materialIndex );
}
if ( geoInfo.normal ) {
buffers.normal.push( faceNormals[ 0 ] );
buffers.normal.push( faceNormals[ 1 ] );
buffers.normal.push( faceNormals[ 2 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 + 1 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 + 2 ] );
buffers.normal.push( faceNormals[ i * 3 ] );
buffers.normal.push( faceNormals[ i * 3 + 1 ] );
buffers.normal.push( faceNormals[ i * 3 + 2 ] );
}
if ( geoInfo.uv ) {
geoInfo.uv.forEach( function ( uv, j ) {
if ( buffers.uvs[ j ] === undefined ) buffers.uvs[ j ] = [];
buffers.uvs[ j ].push( faceUVs[ j ][ 0 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ 1 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 + 1 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i * 2 + 1 ] );
} );
}
}
}
function addMorphTargets( FBXTree, parentGeo, parentGeoNode, morphTarget, preTransform ) {
if ( morphTarget === null ) return;
parentGeo.morphAttributes.position = [];
parentGeo.morphAttributes.normal = [];
morphTarget.rawTargets.forEach( function ( rawTarget ) {
var morphGeoNode = FBXTree.Objects.Geometry[ rawTarget.geoID ];
if ( morphGeoNode !== undefined ) {
genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform );
}
} );
}
// a morph geometry node is similar to a standard node, and the node is also contained
// in FBXTree.Objects.Geometry, however it can only have attributes for position, normal
// and a special attribute Index defining which vertices of the original geometry are affected
// Normal and position attributes only have data for the vertices that are affected by the morph
function genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform ) {
var morphGeo = new THREE.BufferGeometry();
if ( morphGeoNode.attrName ) morphGeo.name = morphGeoNode.attrName;
var vertexIndices = ( parentGeoNode.PolygonVertexIndex !== undefined ) ? parentGeoNode.PolygonVertexIndex.a : [];
// make a copy of the parent's vertex positions
var vertexPositions = ( parentGeoNode.Vertices !== undefined ) ? parentGeoNode.Vertices.a.slice() : [];
var morphPositions = ( morphGeoNode.Vertices !== undefined ) ? morphGeoNode.Vertices.a : [];
var indices = ( morphGeoNode.Indexes !== undefined ) ? morphGeoNode.Indexes.a : [];
for ( var i = 0; i < indices.length; i ++ ) {
var morphIndex = indices[ i ] * 3;
// FBX format uses blend shapes rather than morph targets. This can be converted
// by additively combining the blend shape positions with the original geometry's positions
vertexPositions[ morphIndex ] += morphPositions[ i * 3 ];
vertexPositions[ morphIndex + 1 ] += morphPositions[ i * 3 + 1 ];
vertexPositions[ morphIndex + 2 ] += morphPositions[ i * 3 + 2 ];
}
// TODO: add morph normal support
var morphGeoInfo = {
vertexIndices: vertexIndices,
vertexPositions: vertexPositions,
};
var morphBuffers = genBuffers( morphGeoInfo );
var positionAttribute = new THREE.Float32BufferAttribute( morphBuffers.vertex, 3 );
positionAttribute.name = morphGeoNode.attrName;
preTransform.applyToBufferAttribute( positionAttribute );
parentGeo.morphAttributes.position.push( positionAttribute );
}
// Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists
function getNormals( NormalNode ) {
var mappingType = NormalNode.MappingInformationType;
var referenceType = NormalNode.ReferenceInformationType;
var buffer = NormalNode.Normals.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
if ( 'NormalIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalIndex.a;
} else if ( 'NormalsIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalsIndex.a;
}
}
return {
dataSize: 3,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists
function getUVs( UVNode ) {
var mappingType = UVNode.MappingInformationType;
var referenceType = UVNode.ReferenceInformationType;
var buffer = UVNode.UV.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = UVNode.UVIndex.a;
}
return {
dataSize: 2,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists
function getColors( ColorNode ) {
var mappingType = ColorNode.MappingInformationType;
var referenceType = ColorNode.ReferenceInformationType;
var buffer = ColorNode.Colors.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = ColorNode.ColorIndex.a;
}
return {
dataSize: 4,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
}
// Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists
function getMaterials( MaterialNode ) {
var mappingType = MaterialNode.MappingInformationType;
var referenceType = MaterialNode.ReferenceInformationType;
if ( mappingType === 'NoMappingInformation' ) {
return {
dataSize: 1,
buffer: [ 0 ],
indices: [ 0 ],
mappingType: 'AllSame',
referenceType: referenceType
};
}
var materialIndexBuffer = MaterialNode.Materials.a;
// Since materials are stored as indices, there's a bit of a mismatch between FBX and what
// we expect.So we create an intermediate buffer that points to the index in the buffer,